635 research outputs found

    LSTM encoder-predictor for short-term train load forecasting

    Get PDF
    ECML/PKDD - The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, Würtzburg, ALLEMAGNE, 16-/09/2019 - 20/09/2019The increase in the amount of data collected in the transport domain can greatly benefit mobility studies and help to create high value-added mobility services for passengers as well as regulation tools for operators. The research detailed in this paper is related to the development of an advanced machine learning approach with the aim of forecasting the passenger load of trains in public transport. Predicting the crowding level on public transport can indeed be useful for enriching the information available to passengers to enable them to better plan their daily trips. Moreover, operators will increasingly need to assess and predict network passenger load to improve train regulation processes and service quality levels. The main issues to address in this forecasting task are the variability in the train load series induced by the train schedule and the influence of several contextual factors, such as calendar information. We propose a neural network LSTM encoder-predictor combined with a contextual representation learning to address this problem. Experiments are conducted on a real dataset provided by the French railway company SNCF and collected over a period of one and a half years. The prediction performance provided by the proposed model are compared to those given by historical models and by traditional machine learning models. The obtained results have demonstrated the potential of the proposed LSTM encoder-predictor to address both one-step-ahead and multi-step forecasting and to outperform other models by maintaining robustness in the quality of the forecasts throughout the time horizon

    Traffic Volume Forecasting Model of Freeway Toll Stations During Holidays – An SVM Model

    Get PDF
    Support vector machine (SVM) models have good performance in predicting daily traffic volume at toll stations, however, they cannot accurately predict holiday traffic volume. Therefore, an improved SVM model is proposed in this paper. The paper takes a toll station in Heilongjiang, China as an example, and uses the daily traffic volume as the learning set. The current and previous 7-day traffic volumes are used as the dependent and independent variables for model learning, respectively. This paper found that the basic SVM model is not accurate enough to forecast the traffic volume during holidays. To improve the model accuracy, this paper first used the SVM model to forecast non-holiday traffic volumes, and proposed a prediction method using quarterly conversion coefficients combined with the SVM model to construct an improved SVM model. The result of the prediction showed that the improved SVM model in this paper was able to effectively improve accuracy, making it better than in the basic SVM and GBDT model, thus proving the feasibility of the improved SVM model

    Multi-Step Subway Passenger Flow Prediction under Large Events Using Website Data

    Get PDF
    An accurate and reliable forecasting method of the subway passenger flow provides the operators with more valuable reference to make decisions, especially in reducing energy consumption and controlling potential risks. However, due to the non-recurrence and inconsistency of large events (such as sports games, concerts or urban marathons), predicting passenger flow under large events has become a very challenging task. This paper proposes a method for extracting event-related information from websites and constructing a multi-step station-level passenger flow prediction model called DeepSPE (Deep Learning for Subway Passenger Flow Forecasting under Events). Experiments on the actual data set of the Beijing subway prove the superiority of the model and the effectiveness of website data in subway passenger flow forecasting under events

    Improving the imperfect passenger flow at Eindhoven Airport

    Get PDF

    Online Predictive Optimization Framework for Stochastic Demand-Responsive Transit Services

    Full text link
    This study develops an online predictive optimization framework for dynamically operating a transit service in an area of crowd movements. The proposed framework integrates demand prediction and supply optimization to periodically redesign the service routes based on recently observed demand. To predict demand for the service, we use Quantile Regression to estimate the marginal distribution of movement counts between each pair of serviced locations. The framework then combines these marginals into a joint demand distribution by constructing a Gaussian copula, which captures the structure of correlation between the marginals. For supply optimization, we devise a linear programming model, which simultaneously determines the route structure and the service frequency according to the predicted demand. Importantly, our framework both preserves the uncertainty structure of future demand and leverages this for robust route optimization, while keeping both components decoupled. We evaluate our framework using a real-world case study of autonomous mobility in a university campus in Denmark. The results show that our framework often obtains the ground truth optimal solution, and can outperform conventional methods for route optimization, which do not leverage full predictive distributions.Comment: 34 pages, 12 figures, 5 table

    Multi-headed self-attention mechanism-based Transformer model for predicting bus travel times across multiple bus routes using heterogeneous datasets

    Get PDF
    Bus transit is a crucial component of transportation networks, especially in urban areas. Bus agencies must enhance the quality of their real-time bus travel information service to serve their passengers better and attract more travelers. Various models have recently been developed for estimating bus travel times to increase the quality of real-time information service. However, most are concentrated on smaller road networks due to their generally subpar performance in densely populated urban regions on a vast network and failure to produce good results with long-range dependencies. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database and the vehicle probe data. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. This study developed a multi-headed self-attention mechanism-based Univariate Transformer neural network to predict the mean vehicle travel times for different hours of the day for multiple stations across multiple routes. In addition, we developed Multivariate GRU and LSTM neural network models for our research to compare the prediction accuracy and comprehend the robustness of the Transformer model. To validate the Transformer Model's performance more in comparison to the GRU and LSTM models, we employed the Historical Average Model and XGBoost model as benchmark models. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. Only the historical average bus travel time was used as the input parameter for the Transformer model. Other features, including spatial and temporal information, volatility measures (e.g., the standard deviation and variance of travel time), dwell time, expected travel time, jam factors, hours of a day, etc., were captured from our dataset. These parameters were employed to develop the Multivariate GRU and LSTM models. The model's performance was evaluated based on a performance metric called Mean Absolute Percentage Error (MAPE). The results showed that the Transformer model outperformed other models for one-hour ahead prediction having minimum and mean MAPE values of 4.32 percent and 8.29 percent, respectively. We also investigated that the Transformer model performed the best during different traffic conditions (e.g., peak and off-peak hours). Furthermore, we also displayed the model computation time for the prediction; XGBoost was found to be the quickest, with a prediction time of 6.28 seconds, while the Transformer model had a prediction time of 7.42 seconds. The study's findings demonstrate that the Transformer model showed its applicability for real-time travel time prediction and guaranteed the high quality of the predictions produced by the model in the context of a complicated extensive transportation network in high-density urban areas and capturing long-range dependencies.Includes bibliographical references

    Cloud-Based Dynamic Programming for an Electric City Bus Energy Management Considering Real-Time Passenger Load Prediction

    Full text link
    Electric city bus gains popularity in recent years for its low greenhouse gas emission, low noise level, etc. Different from a passenger car, the weight of a city bus varies significantly with different amounts of onboard passengers, which is not well studied in existing literature. This study proposes a passenger load prediction model using day-of-week, time-of-day, weather, temperatures, wind levels, and holiday information as inputs. The average model, Regression Tree, Gradient Boost Decision Tree, and Neural Networks models are compared in the passenger load prediction. The Gradient Boost Decision Tree model is selected due to its best accuracy and high stability. Given the predicted passenger load, dynamic programming algorithm determines the optimal power demand for supercapacitor and battery by optimizing the battery aging and energy usage in the cloud. Then rule extraction is conducted on dynamic programming results, and the rule is real-time loaded to onboard controllers of vehicles. The proposed cloud-based dynamic programming and rule extraction framework with the passenger load prediction shows 4% and 11% fewer bus operating costs in off-peak and peak hours, respectively. The operating cost by the proposed framework is less than 1% shy of the dynamic programming with the true passenger load information

    Incorporating weather conditions and travel history in estimating the alighting bus stops from smart card data

    Get PDF
    Origin-destination flow of passengers in bus networks is a crucial input to the public transport planning and operational decisions. Smart card systems in many cities, however, record only the bus boarding information (namely an open system), which makes it challenging to use smart card data for origin-destination estimations and subsequent analyses. This study addresses this research gap by proposing a machine learning approach and applying the gradient boosting decision tree (GBDT) algorithm to estimate the alighting stops of bus trips from open smart card data. It advances the state-of-the-art by including, for the first time, weather variables and travel history of individuals in the GBDT algorithm alongside the network characteristics. The method is applied to six-month smart card data from the City of Changsha, China, with more than 17 million trip-records from 700 thousand card users. The model prediction results show that, compared to classic machine learning methods, GBDT not only yields higher prediction accuracy but more importantly is also able to rank the influencing factors on bus ridership. The results demonstrate that incorporation of weather variables and travel history further improves the prediction capability of the models. The proposed GBDT-based framework is flexible and scalable: it can be readily trained with smart card data from other cities to be used for predicting bus origin-destination flow. The results can contribute to improved transport sustainability of a city by enabling smart bus planning and operational decisions

    An investigation into machine learning approaches for forecasting spatio-temporal demand in ride-hailing service

    Full text link
    In this paper, we present machine learning approaches for characterizing and forecasting the short-term demand for on-demand ride-hailing services. We propose the spatio-temporal estimation of the demand that is a function of variable effects related to traffic, pricing and weather conditions. With respect to the methodology, a single decision tree, bootstrap-aggregated (bagged) decision trees, random forest, boosted decision trees, and artificial neural network for regression have been adapted and systematically compared using various statistics, e.g. R-square, Root Mean Square Error (RMSE), and slope. To better assess the quality of the models, they have been tested on a real case study using the data of DiDi Chuxing, the main on-demand ride hailing service provider in China. In the current study, 199,584 time-slots describing the spatio-temporal ride-hailing demand has been extracted with an aggregated-time interval of 10 mins. All the methods are trained and validated on the basis of two independent samples from this dataset. The results revealed that boosted decision trees provide the best prediction accuracy (RMSE=16.41), while avoiding the risk of over-fitting, followed by artificial neural network (20.09), random forest (23.50), bagged decision trees (24.29) and single decision tree (33.55).Comment: Currently under review for journal publicatio
    corecore