2,292 research outputs found

    DEVELOPMENT OF A VERSATILE HIGH SPEED NANOMETER LEVEL SCANNING MULTI-PROBE MICROSCOPE

    Get PDF
    The motivation for development of a multi-probe scanning microscope, presented in this dissertation, is to provide a versatile measurement tool mainly targeted for biological studies, especially on the mechanical and structural properties of an intracellular system. This instrument provides a real-time, three-dimensional (3D) scanning capability. It is capable of operating on feedback from multiple probes, and has an interface for confocal photo-detection of fluorescence-based and single molecule imaging sensitivity. The instrument platform is called a Scanning Multi-Probe Microscope (SMPM) and enables 45 microm by 45 microm by 10 microm navigation of specimen with simultaneous optical and mechanical probing with each probe location being adjustable for collocation or for probing with known probe separations. The 3D positioning stage where the specimen locates was designed to have nanometer resolution and repeatability at 10 Hz scan speed with either open loop or closed loop operating modes. The fine motion of the stage is comprises three orthogonal flexures driven by piezoelectric actuators via a lever linkage. The flexures design is able to scan in larger range especially in z axis and serial connection of the stages helps to minimize the coupling between x, y and z axes. Closed-loop control was realized by the capacitance gauges attached to a rectangular block mounted to the underside of the fine stage upon which the specimen is mounted. The stage's performance was studied theoretically and verified by experimental test. In a step response test and using a simple proportional and integral (PI) controller, standard deviations of 1.9 nm 1.8 nm and 0.41 nm in the x, y and z axes were observed after settling times of 5 ms and 20 ms for the x and y axes. Scanning and imaging of biological specimen and artifact grating are presented to demonstrate the system operation. For faster, short range scanning, novel ultra-fast fiber scanning system was integrated into the xyz fine stage to achieve a super precision dual scanning system. The initial design enables nanometer positioning resolution and runs at 100 Hz scan speed. Both scanning systems are capable of characterization using dimensional metrology tools. Additionally, because the high-bandwidth, ultra-fast scanning system operates through a novel optical attenuating lever, it is physically separate from the longer range scanner and thereby does not introduce additional positioning noise. The dual scanner provides a fine scanning mechanism at relatively low speed and large imaging area using the xyz stage, and focus on a smaller area of interested in a high speed by the ultra-fast scanner easily. Such functionality is beneficial for researchers to study intracellular dynamic motion which requires high speed imaging. Finally, two high end displacement sensor systems, a knife edge sensor and fiber interferometer, were demonstrated as sensing solutions for potential feedback tools to boost the precision and resolution performance of the SMPM

    Characterization of a home-built low temperature scanning probe microscopy system

    Get PDF
    The continuing advancement of technology is the driving force behind science and fundamental research. Scanning probe instruments still have a major impact in nanoscience and technology, because they provide a link between the macroscopic world and the atomic scale. The key to a reliable performance of experiments at the nanometer scale is the instrumentation, that allows probe positioning ranging from micrometers to Ångstroms with sub atomic precisions. A new type of scanning probe microscopy (SPM) system operating in ultra high vacuum (UHV) and at liquid Helium (LHe) temperature was developed. This offers the advantages that even reactive surfaces remain clean over time periods of several days, permitting long time experiments. Moreover, these experiments this low temperature scanning probe microscopy (LTSPM) system is the implementation of a focussing Fabry Perot interferometer (fFPi) that allows the following features: - Small amplitude operations and stiff cantilevers require sensors with high deflection sensitivity. With the fFPi in this low temperature SPM system, a deflection sensitivity of 4fm/ sqrt(Hz) at 1MHz can be obtained. - Wide detection bandwidth (DC-10MHz) enables the operation of higher flexural oscillation modes as well as the torsional modes of the cantilever. - A laser spot size of 3µm allows the use of ultra small cantilevers with the dimensions 1/10 of conventional cantilevers. - Photothermal excitation of cantilevers avoids undesirable mechanical vibrations near the cantilever resonance frequency. - Simultaneous flexural and torsional force detection provides quantitative studies of frictions and thus, atom manipulations by atomic force microscopy (AFM). - The combination of both types of microscopes (simultaneous AFM/STM) reveals more information than a scanning tunneling microscopy (STM) or AFM alone. A series of measurements on Si(111)7x7, herringbone superstructure of Au(111) and highly oriented pyrolytic graphite (HOPG) provides information regarding imaging performance of the system. Among these performance tests are atomically resolved scans at three different operating temperatures in STM mode. In non-contact atomic force microscopy (nc-AFM) mode, imaging was performed with the cantilever driven at the fundamental and 2nd oscillation mode. Additional measurements were performed with the fFPi in order to quantify the impact of the laser cooling effects (radiation pressure and photothermal effects) on the oscillating cantilever at three different operating temperatures. The aim of this work is the development, implementation and characterization of a new low temperature scanning probe microscope with an ultra sensitive and high bandwidth fFPi deflection sensor, suitable for nc-AFM operations with small, simultaneous flexural and torsional cantilever oscillation modes. Furthermore, expected upgrades will allow simultaneous nc-AFM/STM operations. Keywords: low temperature home-built simultaneous STM/ nc-AFM, tip-sample gap stability, PLL and self-excitation, highly oriented pyrolytic graphite (HOPG), reconstructed Si(111)7x7, herringbone superstructure, focussing Fabry-Perot interferometer, cantilever cooling, radiation pressure and photothermal effects. Der kontinuierliche, technologische Fortschritt ist die treibende Kraft hinter Wissenschaft und Grundlagenforschung. Rasterkraft und -tunnel Instrumente haben immer noch einen bedeutenden Einfluss auf die Nanotechnologie und -wissenschaft, weil sie eine Verbindung zwischen der makroskopischen Welt und den atomaren Massstäben darstellen. Der Schlüssel für eine zuverlässige Ausführung von Experimenten mit Nanometer Massstäben ist die Instrumentierung, die eine Spitzenpositionierung von Mikrometer bis Ångstroms mit subatomarer Präzision erlaubt. Ein neuartiges Rasterspitzen Mikroskop (SPM) System wurde entwickelt, das im Ultra Hoch Vakuum (UHV) und bei flüssig Helium Temperaturen arbeitet. Dies bietet Vorteile weil sogar reaktive Oberflächen über eine Dauer von einigen Tagen sauber bleiben, was eine längere Experimentierphase zulässt. Zusätzlich zeigen diese Experimente bei tiefen Temperaturen weitere Vorteile wie kleine Driftwerte und tiefe Piezo Kriechraten. Der Ansatz bei diesem Tieftemperatur Rasterspitzen Mikroskop System ist die Implementierung eines fokussierenden Fabry Perot Interferometers das die folgenden Eigenschaften vorweist: - Der Betrieb bei kleinen Amplituden und mit steifen Cantilever setzt Sensoren mit einer hohen Ablenkempfindlichkeit voraus. Mit diesem fokussierenden Fabry Perot Interferometer (fFPi) kann eine Ablenkempfindlichkeit von 4fm/ sqrt(Hz) bei 1MHz erreicht werden. - Detektion mit einer grossen Bandbreite (DC-10MHz) erlauben einen Betrieb von Cantilever mit flexuralen und torsionalen Oszillation Modi. - Ein Laser mit einem Brennpunkt von 3µm lässt einen Betrieb mit einem ultra kleinen Cantilever zu, der 1/10 so gross ist wie ein konventioneller Cantilever. - Photothermische Anregung eines Cantilevers vermeidet unerwünschte mechanische Vibrationen rund um die Resonanzfrequenz. - Gleichzeitige flexural und torsional Kraftdetektion erlauben quantitative Untersuchungen von Reibungen und daher atomare Manipulationen mit Rasterkraft Mikroskopie (AFM). - Die Kombination und simultanen Betrieb von beiden Rasterspitzen Mikroskopen (AFM/STM) zeigen mehr Information als ein Raster Tunnel Mikroskop (STM) alleine. Eine Serie von Messungen mit Si(111)7x7, Herringbone Superstrukturen auf Au(111) und Highly Oriented Pyrolytic Graphite (HOPG) geben Information bezüglich der Leistungen des Systems preis. Einige dieser Leistungstests sind atomar aufgelöste Abbildungen bei drei unterschiedlichen Betriebstemperaturen im STM Betriebsart. Im nicht-Kontakt AFM (nc-AFM) Betriebsart, Abbildungen sind ausgeführt worden auf der Grundschwingung und der zweiten Oberschwingung. Zusätzliche Messungen wurden mit dem fFPi ausgeführt um den Einfluss der Laserkühlung auf den oszillierenden Cantilever bei drei unterschiedlichen Betriebstemperaturen zu quantifizieren. Das Ziel dieser Arbeit ist die Entwicklung, Implementation und Charakterisierung eines neuen Tieftemperatur Rasterspitzen Mikroskops mit einem ultra-empfindlichen und Breitband fokussierenden Fabry Perot Interferometer Ablenk Sensor, geeignet für den nicht-Kontakt AFM Betrieb mit kleinen, simultanen flexural und torsional Cantilever Schwingungsmodi. Naheliegende Erweiterungen des Systems gewährleisten einen simultan nc-AFM/STM Betrieb. Schlüsselwörter: Tieftemperatur simultan nc-AFM/STM aus Eigenbau, Spitzen-Probe Spalt Stabilität, PLL und Eigenanregungsbetrieb, Highly Oriented Pyrolytic Graphite (HOPG), reconstrukturiertes Si(111)7x7, Herringbone Superstruktur, fokussierenden Fabry Perot Interferometer, Cantilever Kühlung, Strahlendruck und photothermische Effekte

    Development of a Traceable Atomic Force Microscope with Interferometer and Compensation Flexure Stage

    Get PDF
    Entwicklung eines ruckfuhrbaren Rasterkraftmikroskops auf der Basis von Interferometern und einer geregelten Einkorperfuhrung Abstrakt Rastersondenmikroskope, zu denen unter anderem Rastertunnelmikroskope (STM) und Rasterkraftmikroskope (AFM) gezahlt werden, werden an vielen Stellen in der Material- und Oberflachenforschung, der Halbleitertechnologie sowie der Biotechnologie angewendet. Sie sind zudem denkbare Werkzeuge der Nanotechnologien, so beispielsweise der Nanolithographie. Zudem konnen sie der Manipulation von Atomen und zur Nanometrologie dienen. Kommerzielle AFM bestehen unter anderem aus einem Laser, Photoempfanger, Regler, Piezoantriebssystem sowie einem Tastsystem. Dabei kommt den Piezoelementen des Antriebssystems besondere Bedeutung zu. Die von Piezoelementen bekannten Nachteile, wie Nichtlinearitat, Hysterese, Alterung, thermische Drift, Kriechen und Ubersprechen, konnen durchaus 20% der Messabweichungen bei Vorwartssteuerung verursachen. Daher sollten AFM, Metrologiestandards entsprechend, zur Reduzierung der Mesunsicherheit regelmasig ruckfuhrbar kalibriert werden. Das Ziel der vorliegenden Arbeit bestand in der Entwicklung eines ruckfuhrbaren Rasterkraftmikroskops (Traceable Atomic Force Microscope, TAFM) zum Einsatz als staatliches Normal zur ruckfuhrbaren Vermessung von Normalen im Nanometer- Bereich fur die taiwanesische Industrie. Das TAFM wurde als Kombination eines kommerziellen AFM, zwei Laserinterferometern, einer aktiv geregelten dreiachsigen Prazisionsfuhrung, einem Metrologierahmen aus Super-Invar, einer Schwingungsdampfung sowie einer temperaturgeregelten Umhausung konzipiert und aufgebaut. Zur Reduzierung des Abbe-Offsets wurden die Interferometer derart angeordnet, dass sich ihre virtuell verlangerten Messstrahlen im Antastpunkt des Cantilevers und damit direkt auf der Probenoberflache im Messpunkt schneiden. Eine einwandfreie Referenzbewegung des Systems wurde durch die eingesetzten Prazisionsfuhrungen sichergestellt, wahrend die direkte Ruckfuhrbarkeit auf die Definition der Langeneinheit ?Meter" durch den Einsatz von zwei Laser- Interferometern erreicht wurde. Die ermittelte erweiterte Messunsicherheit des TAFM fur die laterale Messung einer Lange von 292 nm betrugt bei einer statistischen Sicherheit von 95% unter Berucksichtigung von 29 Freiheitsgraden 2,5 nm. Da die ermittelte erweiterte Messunsicherheit fur laterale Langenmessungen noch nicht zufriedenstellend und die Ruckfuhrbarkeit in Richtung der Z-Achse nicht gewahrleistet ist, soll das TAFM verbessert werden, um perspektivisch eine Messunsicherheit von 0,5 nm in allen drei Messachsen zu erreichen. Dieses Ziel kann zunachst durch den Einbau eines weiteren Laserinterferometers zur Kalibrierung des Messystems der Z-Achse erreicht werden. Zusatzlich sollte die Umhausung statt auf einem Tisch auf dem schwingungsarmeren Boden platziert werden, was das Rauschen der Interferometer auf weniger als 5 nm reduzieren sollte. Ein verstarkter Metrologierahmen, die Verlagerung der Referenzspiegel vom AFM auf die Prazisionsfuhrung und verkurzte Messkreise, die Konstruktion aller Teile aus dem gleichen Material, ein symmetrischer mechanischer Aufbau und der Einsatz einer aktiven Temperaturregelung mit einer Temperaturstabilitat von 20¡Ó0.1 ¢XC sind weitere wichtige Schritte.Scanning Probe Microscopes (SPMs), generally including such instruments as Scanning Tunneling Microscopes (STMs) and Atomic Force Microscopes (AFMs), have been widely applied to measure engineering surfaces in a variety of fields, such as material sciences, semiconductor industry, and biotechnology. SPMs will also be a potential tool in nanotechnology, for example nanolithography, atom manipulation, and nanometrology. Normally, a commercial AFM consists of a laser, a photo-detector, a controller, a piezo-scanner, and a cantilever tip. The piezo-scanner is critical to the performance of AFMs. The intrinsic properties of piezo-scanners, for instance non-linearity, hysteresis, aging, thermal drift, creep, and coupling effect will result in measurement errors that may reach up to 20 % of the reading. To reduce major measurement errors mentioned above, an AFM should be periodically calibrated with a traceable standard. The goal of my research study was to design a state-of-the-art Traceable Atomic Force Microscope (TAFM) to be used as a primary realization of nanometer scale standards for Taiwan industry. The TAFM was composed of a commercial AFM, two laser interferometers, a 3-axis active compensation flexure stage, a super-Invar metrology frame, a vibration isolator, and a temperature-controlled enclosed box with circulating water. To eliminate the Abbe-offset, the surface-plane of specimens was arranged on the same plane-level to the laser beams emitted by interferometers. The compensation flexure stage was aimed to provide a perfect reference motion mechanism. To achieve the direct traceability to the definition of meter, two interferometers were added to the flexure stage. The TAFM was evaluated to have an expanded uncertainty of 2.5 nm at a confidence level of 95 % and 29 degrees of freedom for a nominal pitch value of 292 nm. Since the expanded uncertainty of pitch measurement is not satisfactory and there is no traceability in the Z direction. The TAFM needs to be improved to meet the requirement of an expanded uncertainty of no more than 0.5 nm at 95 % confidence level at all three axes. The requirement can be achieved by the following improvements: A laser interferometer is added to the flexure stage for Z-height calibration. To reduce the noise of laser interferometer to about 5 nm, the support of the enclosed box is moved from tabletop to the floor. The metrology frame is improved by changing the reference mirrors from AFM to flexure stage, thickening the super-Invar frame, shortening the structure loop and metrology loop, using one material, and realizing a symmetrical mechanism design. The passive temperature control is changed to active temperature control, which will approach an anticipative temperature stability of (20¡Ó0.1) ¢XC in the measuring volume

    Design optimization for the measurement accuracy improvement of a large range nanopositioning stage

    Get PDF
    Both an accurate machine design and an adequate metrology loop definition are critical factors when precision positioning represents a key issue for the final system performance. This article discusses the error budget methodology as an advantageous technique to improve the measurement accuracy of a 2D-long range stage during its design phase. The nanopositioning platform NanoPla is here presented. Its specifications, e.g., XY-travel range of 50 mm ˆ 50 mm and sub-micrometric accuracy; and some novel designed solutions, e.g., a three-layer and two-stage architecture are described. Once defined the prototype, an error analysis is performed to propose improvement design features. Then, the metrology loop of the system is mathematically modelled to define the propagation of the different sources. Several simplifications and design hypothesis are justified and validated, including the assumption of rigid body behavior, which is demonstrated after a finite element analysis verification. The different error sources and their estimated contributions are enumerated in order to conclude with the final error values obtained from the error budget. The measurement deviations obtained demonstrate the important influence of the working environmental conditions, the flatness error of the plane mirror reflectors and the accurate manufacture and assembly of the components forming the metrological loop. Thus, a temperature control of ¿0.1 ¿C results in an acceptable maximum positioning error for the developed NanoPla stage, i.e., 41 nm, 36 nm and 48 nm in X-, Y- and Z-axis, respectively

    Manufacturing Metrology

    Get PDF
    Metrology is the science of measurement, which can be divided into three overlapping activities: (1) the definition of units of measurement, (2) the realization of units of measurement, and (3) the traceability of measurement units. Manufacturing metrology originally implicates the measurement of components and inputs for a manufacturing process to assure they are within specification requirements. It can also be extended to indicate the performance measurement of manufacturing equipment. This Special Issue covers papers revealing novel measurement methodologies and instrumentations for manufacturing metrology from the conventional industry to the frontier of the advanced hi-tech industry. Twenty-five papers are included in this Special Issue. These published papers can be categorized into four main groups, as follows: Length measurement: covering new designs, from micro/nanogap measurement with laser triangulation sensors and laser interferometers to very-long-distance, newly developed mode-locked femtosecond lasers. Surface profile and form measurements: covering technologies with new confocal sensors and imagine sensors: in situ and on-machine measurements. Angle measurements: these include a new 2D precision level design, a review of angle measurement with mode-locked femtosecond lasers, and multi-axis machine tool squareness measurement. Other laboratory systems: these include a water cooling temperature control system and a computer-aided inspection framework for CMM performance evaluation

    THE DEVELOPMENT OF A NOVEL ELECTRO-MAGNETIC FORCE MICROSCOPE

    Get PDF
    This thesis describes the development of a new type of Magnetic Force Microscope (MFM) probe based on a unique electromagnetic design. In addition the design, construction and testing of a new MFM system, complete in both hardware and software, is also described. The MFM allowed initial tests on prototypes of the new probe, and is to provide a base for future new probe integration. The microscope uses standard MFM micro-cantilever probes in static modes of imaging. A new computer hosted DSP control system, software, and its various interfaces with the MFM have been integrated into the system. The system has been tested using standard probes with various specimens and satisfactory results have been produced. A novel probe has been designed to replace the standard MFM magnetic coated tip with a field generated about a sub-micron aperture in a conducting film. The field from the new probe is modelled and its imaging capability investigated, with iterative designs analysed in this way. The practical construction and potential problems therein, of the probe are also considered. Test apertures have been manufactured, and an image of the field produced when operating is provided as support to the theoretical designs. Future methods of using the new probe are also discussed, including the examination of the probe as a magnetic write mechanism. This probe, integrated into the MFM, can provide a new method of microscopic magnetic imaging, and in addition opens a new potential method of magnetic storage that will require further research

    A High-Resolution Combined Scanning Laser- and Widefield Polarizing Microscope for Imaging at Temperatures from 4 K to 300 K

    Full text link
    Polarized light microscopy, as a contrast-enhancing technique for optically anisotropic materials, is a method well suited for the investigation of a wide variety of effects in solid-state physics, as for example birefringence in crystals or the magneto-optical Kerr effect (MOKE). We present a microscopy setup that combines a widefield microscope and a confocal scanning laser microscope with polarization-sensitive detectors. By using a high numerical aperture objective, a spatial resolution of about 240 nm at a wavelength of 405 nm is achieved. The sample is mounted on a 4^4He continuous flow cryostat providing a temperature range between 4 K and 300 K, and electromagnets are used to apply magnetic fields of up to 800 mT with variable in-plane orientation and 20 mT with out-of-plane orientation. Typical applications of the polarizing microscope are the imaging of the in-plane and out-of-plane magnetization via the longitudinal and polar MOKE, imaging of magnetic flux structures in superconductors covered with a magneto-optical indicator film via Faraday effect or imaging of structural features, such as twin-walls in tetragonal SrTiO3_3. The scanning laser microscope furthermore offers the possibility to gain local information on electric transport properties of a sample by detecting the beam-induced voltage change across a current-biased sample. This combination of magnetic, structural and electric imaging capabilities makes the microscope a viable tool for research in the fields of oxide electronics, spintronics, magnetism and superconductivity.Comment: 14 pages, 11 figures. The following article has been accepted by Review of Scientific Instruments. After it is published, it will be found at http://aip.scitation.org/journal/rs

    On Demand Nanoscale Phase Manipulation of Vanadium Dioxide by Scanning Probe Lithography

    Get PDF
    This dissertation focuses on nanoscale phase manipulations of Vanadium Dioxide. Nanoscale control of material properties is a current obstacle for the next generation of optoelectronic and photonic devices. Vanadium Dioxide is a strongly correlated material with an insulator-metal phase transition at approximately 345 K that generates dramatic electronic and optical property changes. However, the development of industry device application based on this phenomenon has been limited thus far due to the macroscopic scale and the volatile nature of the phase transition. In this work these limitations are assessed and circumvented. A home-built, variable temperature, scanning near-field optical microscope was engineered for Vanadium Dioxide manipulations and detections. Using this instrument, various scanning probe lithography based methods are implemented to induce new nanoscale phases. Three new phase transitions are discovered; a monoclinic metallic at the nanoscale, a rutile metallic metastable phase, and a van der Waals layered insulator. These new phases are studied and characterized to further understand phase manipulations in strongly correlated materials. One of the new phase transitions, monoclinic metallic, showcases plasmonic excitations. This phenomenon is used to demonstrate various nanoplasmonic devices such as rewritable waveguides, spatially modulated resonators, and reconfigurable planar optics. Finally, Oxygen Vacancy diffusion of the monoclinic structure is monitored to determine the temporal limitation for device applications. The discovery, demonstration, and study of these phases clearly shows the ability to manipulate Vanadium Dioxide on the nanoscale for the first time. Phase control is accomplished under ambient conditions and is stable over long periods of time. This technology opens the door for multifunctional device application using strongly correlated materials
    • …
    corecore