1,219 research outputs found

    Anatomical Priors in Convolutional Networks for Unsupervised Biomedical Segmentation

    Full text link
    We consider the problem of segmenting a biomedical image into anatomical regions of interest. We specifically address the frequent scenario where we have no paired training data that contains images and their manual segmentations. Instead, we employ unpaired segmentation images to build an anatomical prior. Critically these segmentations can be derived from imaging data from a different dataset and imaging modality than the current task. We introduce a generative probabilistic model that employs the learned prior through a convolutional neural network to compute segmentations in an unsupervised setting. We conducted an empirical analysis of the proposed approach in the context of structural brain MRI segmentation, using a multi-study dataset of more than 14,000 scans. Our results show that an anatomical prior can enable fast unsupervised segmentation which is typically not possible using standard convolutional networks. The integration of anatomical priors can facilitate CNN-based anatomical segmentation in a range of novel clinical problems, where few or no annotations are available and thus standard networks are not trainable. The code is freely available at http://github.com/adalca/neuron.Comment: Presented at CVPR 2018. IEEE CVPR proceedings pp. 9290-929

    Topic Embeddings – A New Approach to Classify Very Short Documents Based on Predefined Topics

    Get PDF
    Traditional unsupervised topic modeling approaches like Latent Dirichlet Allocation (LDA) lack the ability to classify documents into a predefined set of topics. On the other hand, supervised methods require significant amounts of labeled data to perform well on such tasks. We develop a new unsupervised method based on word embeddings to classify documents into predefined topics. We evaluate the predictive performance of this novel approach and compare it to seeded LDA. We use a real-world dataset from online advertising, which is comprised of markedly short documents. Our results indicate the two methods may complement one another well, leading to remarkable sensitivity and precision scores of ensemble learners trained thereupon

    Normalizing Flows for Human Pose Anomaly Detection

    Full text link
    Video anomaly detection is an ill-posed problem because it relies on many parameters such as appearance, pose, camera angle, background, and more. We distill the problem to anomaly detection of human pose, thus reducing the risk of nuisance parameters such as appearance affecting the result. Focusing on pose alone also has the side benefit of reducing bias against distinct minority groups. Our model works directly on human pose graph sequences and is exceptionally lightweight (∼1K\sim1K parameters), capable of running on any machine able to run the pose estimation with negligible additional resources. We leverage the highly compact pose representation in a normalizing flows framework, which we extend to tackle the unique characteristics of spatio-temporal pose data and show its advantages in this use case. Our algorithm uses normalizing flows to learn a bijective mapping between the pose data distribution and a Gaussian distribution, using spatio-temporal graph convolution blocks. The algorithm is quite general and can handle training data of only normal examples, as well as a supervised dataset that consists of labeled normal and abnormal examples. We report state-of-the-art results on two anomaly detection benchmarks - the unsupervised ShanghaiTech dataset and the recent supervised UBnormal dataset

    FCL-GAN: A Lightweight and Real-Time Baseline for Unsupervised Blind Image Deblurring

    Full text link
    Blind image deblurring (BID) remains a challenging and significant task. Benefiting from the strong fitting ability of deep learning, paired data-driven supervised BID method has obtained great progress. However, paired data are usually synthesized by hand, and the realistic blurs are more complex than synthetic ones, which makes the supervised methods inept at modeling realistic blurs and hinders their real-world applications. As such, unsupervised deep BID method without paired data offers certain advantages, but current methods still suffer from some drawbacks, e.g., bulky model size, long inference time, and strict image resolution and domain requirements. In this paper, we propose a lightweight and real-time unsupervised BID baseline, termed Frequency-domain Contrastive Loss Constrained Lightweight CycleGAN (shortly, FCL-GAN), with attractive properties, i.e., no image domain limitation, no image resolution limitation, 25x lighter than SOTA, and 5x faster than SOTA. To guarantee the lightweight property and performance superiority, two new collaboration units called lightweight domain conversion unit(LDCU) and parameter-free frequency-domain contrastive unit(PFCU) are designed. LDCU mainly implements inter-domain conversion in lightweight manner. PFCU further explores the similarity measure, external difference and internal connection between the blurred domain and sharp domain images in frequency domain, without involving extra parameters. Extensive experiments on several image datasets demonstrate the effectiveness of our FCL-GAN in terms of performance, model size and reference time

    MISSRec: Pre-training and Transferring Multi-modal Interest-aware Sequence Representation for Recommendation

    Full text link
    The goal of sequential recommendation (SR) is to predict a user's potential interested items based on her/his historical interaction sequences. Most existing sequential recommenders are developed based on ID features, which, despite their widespread use, often underperform with sparse IDs and struggle with the cold-start problem. Besides, inconsistent ID mappings hinder the model's transferability, isolating similar recommendation domains that could have been co-optimized. This paper aims to address these issues by exploring the potential of multi-modal information in learning robust and generalizable sequence representations. We propose MISSRec, a multi-modal pre-training and transfer learning framework for SR. On the user side, we design a Transformer-based encoder-decoder model, where the contextual encoder learns to capture the sequence-level multi-modal synergy while a novel interest-aware decoder is developed to grasp item-modality-interest relations for better sequence representation. On the candidate item side, we adopt a dynamic fusion module to produce user-adaptive item representation, providing more precise matching between users and items. We pre-train the model with contrastive learning objectives and fine-tune it in an efficient manner. Extensive experiments demonstrate the effectiveness and flexibility of MISSRec, promising an practical solution for real-world recommendation scenarios.Comment: Accepted to ACM MM 202

    Are Out-of-Distribution Detection Methods Reliable?

    Full text link
    This paper establishes a novel evaluation framework for assessing the performance of out-of-distribution (OOD) detection in realistic settings. Our goal is to expose the shortcomings of existing OOD detection benchmarks and encourage a necessary research direction shift toward satisfying the requirements of real-world applications. We expand OOD detection research by introducing new OOD test datasets CIFAR-10-R, CIFAR-100-R, and MVTec-R, which allow researchers to benchmark OOD detection performance under realistic distribution shifts. We also introduce a generalizability score to measure a method's ability to generalize from standard OOD detection test datasets to a realistic setting. Contrary to existing OOD detection research, we demonstrate that further performance improvements on standard benchmark datasets do not increase the usability of such models in the real world. State-of-the-art (SOTA) methods tested on our realistic distributionally-shifted datasets drop in performance for up to 45%. This setting is critical for evaluating the reliability of OOD models before they are deployed in real-world environments
    • …
    corecore