63 research outputs found

    Gossip Codes for Fingerprinting: Construction, Erasure Analysis and Pirate Tracing

    Full text link
    This work presents two new construction techniques for q-ary Gossip codes from tdesigns and Traceability schemes. These Gossip codes achieve the shortest code length specified in terms of code parameters and can withstand erasures in digital fingerprinting applications. This work presents the construction of embedded Gossip codes for extending an existing Gossip code into a bigger code. It discusses the construction of concatenated codes and realisation of erasure model through concatenated codes.Comment: 28 page

    On the Saddle-point Solution and the Large-Coalition Asymptotics of Fingerprinting Games

    Full text link
    We study a fingerprinting game in which the number of colluders and the collusion channel are unknown. The encoder embeds fingerprints into a host sequence and provides the decoder with the capability to trace back pirated copies to the colluders. Fingerprinting capacity has recently been derived as the limit value of a sequence of maximin games with mutual information as their payoff functions. However, these games generally do not admit saddle-point solutions and are very hard to solve numerically. Here under the so-called Boneh-Shaw marking assumption, we reformulate the capacity as the value of a single two-person zero-sum game, and show that it is achieved by a saddle-point solution. If the maximal coalition size is k and the fingerprinting alphabet is binary, we show that capacity decays quadratically with k. Furthermore, we prove rigorously that the asymptotic capacity is 1/(k^2 2ln2) and we confirm our earlier conjecture that Tardos' choice of the arcsine distribution asymptotically maximizes the mutual information payoff function while the interleaving attack minimizes it. Along with the asymptotic behavior, numerical solutions to the game for small k are also presented.Comment: submitted to IEEE Trans. on Information Forensics and Securit

    Buyer-seller watermarking protocol in digital cinema

    Get PDF
    Master'sMASTER OF SCIENC

    Random Codes and Graphs for Secure Communication

    Get PDF
    This dissertation considers two groups of problems related to secure communication. The first line of research is devoted to theoretical problems of copyright protection of digital content. Embedding identification data in the content is a well-developed technique of content protection known under the name of fingerprinting. Schemes that provide such protection are known as fingerprinting codes in the literature. We study limits of the number of users of a fingerprinting system as well as constructions of low-complexity fingerprinting codes that support a large number of users. The second problem that is addressed in the dissertation relates to connectivity analysis of ad hoc wireless networks. One of the basic requirements in such environments is to ensure that none of the nodes are completely isolated from the network. We address the problem of characterizing threshold parameters for node isolation that enable the system designer to choose the power needed for network operation based on the outage probability of links in the network. The methods of this research draw from coding theory, information theory and random graphs. An idea that permeates most results in this dissertation is the application of randomization both in the analysis of fingerprinting and node isolation. The main contributions of this dissertation belong in the area of fingerprinting and are described as follows. We derive new lower and upper bounds on the optimal trade-off between the number of users and the length of the fingerprints required to ensure reliability of the system, which we call fingerprinting capacity. Information-theoretic techniques employed in our proofs of bounds on capacity originate in coding theorems for channels with multiple inputs. Constructions of fingerprinting codes draw on methods of coding theory related to list decoding and code concatenation. We also analyze random graph models for ad hoc networks with link failures and secure sensor networks that employ randomized key distribution. We establish a precise zero-one law for node isolation in the model with link failures for nodes placed on the circle. We further generalize this result to obtain a one-law for secure sensor networks on some surfaces

    Dynamic Tardos Traitor Tracing Schemes

    Full text link
    We construct binary dynamic traitor tracing schemes, where the number of watermark bits needed to trace and disconnect any coalition of pirates is quadratic in the number of pirates, and logarithmic in the total number of users and the error probability. Our results improve upon results of Tassa, and our schemes have several other advantages, such as being able to generate all codewords in advance, a simple accusation method, and flexibility when the feedback from the pirate network is delayed.Comment: 13 pages, 5 figure

    Integration and optimization of collusion secure fingerprinting in image watermarking

    Get PDF
    Estágio realizado na Fraunhofer SIT - e orientado pelo Dr. Huajian Liu e pelo Dr. Marcel SchäferTese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201
    • …
    corecore