8,437 research outputs found

    A magnet assisted segmental rotor switched reluctance machine suitable for fault tolerant aerospace applications

    Get PDF
    PhD ThesisThe aerospace industry is moving towards more-electric aircraft. These electrical systems are lighter, more efficient and smaller compared to present hydraulic system. The permanent magnet electrical machine is an obvious choice to replace these hydraulic systems because of its high torque density. However for low speed applications, there are significant drag torque issues which negate some of the machine’s advantages. This thesis introduces a new permanent magnet assisted segmental rotor switched reluctance machine. This machine was first designed by using finite element software and then compared with a conventional segmental rotor switched reluctance machine, showing an increase in torque by increasing non saturation region of the stator lamination. On this basis, a fault-tolerant permanent magnet assisted segmental rotor switched reluctance machine was designed to replace the permanent magnet machine used in the nose wheel of the aeroplane. Both two-dimensional and three-dimensional finite element analyses were conducted to analyse the dominant end winding effect. Fault-tolerant segmental rotor switched reluctance machine was then built and tested. Static analysis was conducted to determine current-flux linkage and torque values at different rotor angles. The machine was analysed both with and without magnets to assess the effect of reverse magnetization with magnets at the stator tooth tip. Mutual inductance was also found using the same test rig. Dynamic testing of the machine was done to determine open circuit voltage and short-circuit current. A novel pot core permanent magnet assisted inductor was also designed and compared with the conventional E-E core inductor. The magnet was used to hold the inductance of the inductor constant for high current values and the inductor was then tested to determine magnet’s effect. A dominant inner loop effect was found which was proved by doing several tests. Various recommendations were made to further improve overall performance of the machine and the inductor

    Faults and unbalance forces in the switched reluctance machine

    Get PDF
    The paper identifies and analyzes a number of severe fault conditions that can occur in the switched reluctance machine, from the electrical and mechanical points of view. It is shown how the currents, torques, and forces may be estimated, and examples are included showing the possibility of large lateral forces on the rotor. The methods used for analysis include finite-element analysis, magnetic circuit models, and experiments on a small machine specially modified for the measurement of forces and magnetization characteristics when the rotor is off-center. Also described is a computer program (PC-SRD dynamic) which is used for simulating operation under fault conditions as well as normal conditions. The paper discusses various electrical configurations of windings and controller circuits, along with methods of fault detection and protective relaying. The paper attempts to cover several analytical and experimental aspects as well as methods of detection and protection

    Optimal design of switched reluctance motors

    Get PDF
    The fundamental theory of the switched reluctance motor is presented with a number of new equations. It is used to show how the practical development of a design calculation should proceed, and this leads to a discussion of physical characteristics required to achieve satisfactory performance and to reduce acoustic noise. The paper makes a few generic observations on the characteristics of successful products that use switched reluctance motors. It is written at a basic engineering level and makes no attempt to apply sophisticated optimization theory

    In-wheel axial-flux SRM drive for light electric vehicles

    Get PDF
    Revenues from global sales of light electric vehicles are expected to grow from 9.3billionin2017to 9.3 billion in 2017 to 23.9 billion in 2025. In order to boost this growth electric drives with better features and lower costs have to be developed. This paper presents a new in-wheel axial-flux switched reluctance motor with double rotor and a particular disposition of the stator and rotor poles that provides short flux path without flux reversal. The magnetic active parts of the stator and the rotor are built using soft magnetic composites. The motor is fed from batteries trough a on purpose designed electronic power controller. Simulation of the whole drive, using Matlab-Simulink coupled with the results of the three dimensional finite analysis of the motor is carried out. Simulation results prove that the proposed in-wheel axial-flux switched reluctance motor drive is adequate for the propulsion of electric light vehicles

    Switched Reluctance Motor Fault Tolerant Operation

    Get PDF
    In recent years, with the development of micro and power electronics, the switched reluctance machine has been gaining popularity. This type of machine is attractive because it has a cheap and easy construction, having absence of rotor windings and permanent magnets. It has also an inherent fault tolerance ability. Due to this fault tolerance it has gained the attention of industries and applications that require safe and reliable operation. However, the machine is only fault tolerant to a point and, with the aim of improving its already high fault tolerance, multiple studies were conducted on the subject. In this dissertation a new passive fault tolerant method, comprising on simple modifications in the windings, converter and control method will be presented. Worth notice that one of the modifications is already discussed in the cited literature. This method is aimed principally at open circuit faults in the windings with the machine working as a motor in the low speed zone. The effectiveness of this method will be studied by comparison of a regular SRM with one with the solution through simulation of winding fault conditions, namely open and short circuits faults. In order to do this, first finite element analysis was performed, with the software Flux2D®, in order to obtain the magnetic and torque characteristics of the machines. This was followed by dynamic simulations in Matlab-simulink®. It will be shown that the method is very effective for open circuit faults but will only have negligible improvements in case of winding short circuits

    A new sensorless method for switched reluctance motor drives

    Get PDF
    This paper describes a new method for indirect sensing of the rotor position in switched reluctance motors (SRMs) using pulse width modulation voltage control. The detection method uses the change of the derivative of the phase current to detect the position where a rotor pole and stator pole start to overlap, giving one position update per energy conversion. As no a priori knowledge of motor parameters is required (except for the numbers of stator and rotor poles), the method is applicable to most SRM topologies in a wide power and speed range and for several inverter topologies. The method allows modest closed-loop dynamic performance. To start up the motor, a feedforward stepping method is used which assures robust startup (even under load) from standstill to a predefined speed at which closed-loop sensorless operation can be applied. Experimental results demonstrate the robust functionality of the method with just one current sensor in the inverter, even with excitation overlap, and the sensorless operation improves with speed. The method is comparable to the back-EMF position estimation for brushless DC motors in principle, performance and cost. A detailed operation and implementation of this scheme is shown, together with steady-state and dynamic transient test results

    Detection of inter-turn faults in multi-phase ferrite-PM assisted synchronous reluctance machine

    Get PDF
    Inter-turn winding faults in five-phase ferrite-permanent magnet-assisted synchronous reluctance motors (fPMa-SynRMs) can lead to catastrophic consequences if not detected in a timely manner, since they can quickly progress into more severe short-circuit faults, such as coil-to-coil, phase-to-ground or phase-to-phase faults. This paper analyzes the feasibility of detecting such harmful faults in their early stage, with only one short-circuited turn, since there is a lack of works related to this topic in multi-phase fPMa-SynRMs. Two methods are tested for this purpose, the analysis of the spectral content of the zero-sequence voltage component (ZSVC) and the analysis of the stator current spectra, also known as motor current signature analysis (MCSA), which is a well-known fault diagnosis method. This paper compares the performance and sensitivity of both methods under different operating conditions. It is proven that inter-turn faults can be detected in the early stage, with the ZSVC providing more sensitivity than the MCSA method. It is also proven that the working conditions have little effect on the sensitivity of both methods. To conclude, this paper proposes two inter-turn fault indicators and the threshold values to detect such faults in the early stage, which are calculated from the spectral information of the ZSVC and the line currentsPeer ReviewedPostprint (published version

    Modular switched reluctance machines to be used in automotive applications

    Get PDF
    In the last decades industry, including also that of electrical machines and drives, was pushed near to its limits by the high market demands and fierce competition. As a response to the demanding challenges, improvements were made both in the design and manufacturing of electrical machines and drives. One of the introduced advanced technological solutions was the modular construction. This approach enables on a hand easier and higher productivity manufacturing, and on the other hand fast repairing in exploitation. Switched reluctance machines (SRMs) are very well fitted for modular construction, since the magnetic insulation of the phases is a basic design requirement. The paper is a survey of the main achievements in the field of modular electrical machines, (especially SRMs), setting the focus on the machines designed to be used in automotive applications

    Comparison and Design Optimization of a Five-Phase Flux-Switching PM Machine for In-Wheel Traction Applications

    Get PDF
    A comparative study of five-phase outer-rotor flux-switching permanent magnet (FSPM) machines with different topologies for in-wheel traction applications is presented in this paper. Those topologies include double-layer winding, single-layer winding, C-core, and E-core configurations. The electromagnetic performance in the low-speed region, the flux-weakening capability in the high-speed region, and the fault-tolerance capability are all investigated in detail. The results indicate that the E-core FSPM machine has performance advantages. Furthermore, two kinds of E-core FSPM machines with different stator and rotor pole combinations are optimized, respectively. In order to reduce the computational burden during the large-scale optimization process, a mathematical technique is developed based on the concept of computationally efficient finite-element analysis. While a differential evolution algorithm serves as a global search engine to target optimized designs. Subsequently, multiobjective tradeoffs are presented based on a Pareto-set for 20 000 candidate designs. Finally, an optimal design is prototyped, and some experimental results are given to confirm the validity of the simulation results in this paper

    A novel topology of high-speed SRM for high-performance traction applications

    Get PDF
    A novel topology of high-speed Switched Reluctance Machine (SRM) for high-performance traction applications is presented in this article. The target application, a Hybrid Electric Vehicle (HEV) in the sport segment poses very demanding specifications on the power and torque density of the electric traction machine. After evaluating multiple alternatives, the topology proposed is a 2-phase axial flux machine featuring both segmented twin rotors and a segmented stator core. Electromagnetic, thermal and mechanical models of the proposed topology are developed and subsequently integrated in an overall optimisation algorithm in order to find the optimal geometry for the application. Special focus is laid on the thermal management of the machine, due to the tough thermal conditions resulting from the high frequency, high current and highly saturated operation. Some experimental results are also included in order to validate the modelling and simulation results
    • …
    corecore