69,533 research outputs found

    Short Pairing-Free Blind Signatures with Exponential Security

    Get PDF
    This paper proposes the first practical pairing-free three-move blind signature schemes that (1) are concurrently secure, (2) produce short signatures (i.e., three or four group elements/scalars), and (3) are provably secure either in the generic group model (GGM) or the algebraic group model (AGM) under the (plain or one-more) discrete logarithm assumption (beyond additionally assuming random oracles). We also propose a partially blind version of one of our schemes. Our schemes do not rely on the hardness of the ROS problem (which can be broken in polynomial time) or of the mROS problem (which admits sub-exponential attacks). The only prior work with these properties is Abe’s signature scheme (EUROCRYPT ’02), which was recently proved to be secure in the AGM by Kastner et al. (PKC ’22), but which also produces signatures twice as long as those from our scheme. The core of our proofs of security is a new problem, called weighted fractional ROS (WFROS), for which we prove (unconditional) exponential lower bounds

    Security of discrete log cryptosystems in the random oracle and the generic model

    Get PDF
    We introduce novel security proofs that use combinatorial counting arguments rather than reductions to the discrete logarithm or to the Diffie-Hellman problem. Our security results are sharp and clean with no polynomial reduction times involved. We consider a combination of the random oracle model and the generic model. This corresponds to assuming an ideal hash function H given by an oracle and an ideal group of prime order q, where the binary encoding of the group elements is useless for cryptographic attacks In this model, we first show that Schnorr signatures are secure against the one-more signature forgery : A generic adversary performing t generic steps including l sequential interactions with the signer cannot produce l+1 signatures with a better probability than (t 2)/q. We also characterize the different power of sequential and of parallel attacks. Secondly, we prove signed ElGamal encryption is secure against the adaptive chosen ciphertext attack, in which an attacker can arbitrarily use a decryption oracle except for the challenge ciphertext. Moreover, signed ElGamal encryption is secure against the one-more decryption attack: A generic adversary performing t generic steps including l interactions with the decryption oracle cannot distinguish the plaintexts of l + 1 ciphertexts from random strings with a probability exceeding (t 2)/q

    A Note on the Post-Quantum Security of (Ring) Signatures

    Get PDF
    This work revisits the security of classical signatures and ring signatures in a quantum world. For (ordinary) signatures, we focus on the arguably preferable security notion of blind-unforgeability recently proposed by Alagic et al. (Eurocrypt\u2720). We present two short signature schemes achieving this notion: one is in the quantum random oracle model, assuming quantum hardness of SIS; and the other is in the plain model, assuming quantum hardness of LWE with super-polynomial modulus. Prior to this work, the only known blind-unforgeable schemes are Lamport\u27s one-time signature and the Winternitz one-time signature, and both of them are in the quantum random oracle model. For ring signatures, the recent work by Chatterjee et al. (Crypto\u2721) proposes a definition trying to capture adversaries with quantum access to the signer. However, it is unclear if their definition, when restricted to the classical world, is as strong as the standard security notion for ring signatures. They also present a construction that only partially achieves (even) this seeming weak definition, in the sense that the adversary can only conduct superposition attacks over the messages, but not the rings. We propose a new definition that does not suffer from the above issue. Our definition is an analog to the blind-unforgeability in the ring signature setting. Moreover, assuming the quantum hardness of LWE, we construct a compiler converting any blind-unforgeable (ordinary) signatures to a ring signature satisfying our definition

    Anonymous reputation based reservations in e-commerce (AMNESIC)

    Get PDF
    Online reservation systems have grown over the last recent years to facilitate the purchase of goods and services. Generally, reservation systems require that customers provide some personal data to make a reservation effective. With this data, service providers can check the consumer history and decide if the user is trustable enough to get the reserve. Although the reputation of a user is a good metric to implement the access control of the system, providing personal and sensitive data to the system presents high privacy risks, since the interests of a user are totally known and tracked by an external entity. In this paper we design an anonymous reservation protocol that uses reputations to profile the users and control their access to the offered services, but at the same time it preserves their privacy not only from the seller but the service provider

    Security of signed ELGamal encryption

    Get PDF
    Assuming a cryptographically strong cyclic group G of prime order q and a random hash function H, we show that ElGamal encryption with an added Schnorr signature is secure against the adaptive chosen ciphertext attack, in which an attacker can freely use a decryption oracle except for the target ciphertext. We also prove security against the novel one-more-decyption attack. Our security proofs are in a new model, corresponding to a combination of two previously introduced models, the Random Oracle model and the Generic model. The security extends to the distributed threshold version of the scheme. Moreover, we propose a very practical scheme for private information retrieval that is based on blind decryption of ElGamal ciphertexts

    Lattice-Based Blind Signatures: Short, Efficient, and Round-Optimal

    Get PDF
    We give a construction of a 2-round blind signature scheme based on the hardness of standard lattice problems (Ring/Module-SIS/LWE and NTRU) with a signature size of 22 KB. The protocol is round-optimal and has a transcript size that can be as small as 60 KB. This blind signature is around 44 times shorter than the most compact lattice-based scheme based on standard assumptions of del Pino and Katsumata (Crypto 2022) and around 22 times shorter than the scheme of Agrawal et al. (CCS 2022) based on their newly-proposed one-more-SIS assumption. We also give a construction of a ``keyed-verification\u27\u27 blind signature scheme in which the verifier and the signer need to share a secret key. The signature size in this case is only 4848 bytes, but more work needs to be done to explore the efficiency of the protocol which generates the signature
    corecore