25,374 research outputs found

    Supervised Machine Learning Techniques for Short-Term Load Forecasting

    Get PDF
    Electric Load Forecasting is essential for the utility companies for energy management based on the demand. Machine Learning Algorithms has been in the forefront for prediction algorithms. This Thesis is mainly aimed to provide utility companies with a better insight about the wide range of Techniques available to forecast the load demands based on different scenarios. Supervised Machine Learning Algorithms were used to come up with the best possible solution for Short-Term Electric Load forecasting. The input Data set has the hourly load values, Weather data set and other details of a Day. The models were evaluated using MAPE and R2 as the scoring criterion. Support Vector Machines yield the best possible results with the lowest MAPE of 1.46 %, a R2 score of 92 %. Recurrent Neural Networks univariate model serves its purpose as the go to model when it comes to Time-Series Predictions with a MAPE of 2.44 %. The observations from these Machine learning models gives the conclusion that the models depend on the actual Data set availability and the application and scenario in pla

    Forecast electricity demand in commercial building with machine learning models to enable demand response programs

    Get PDF
    Electricity load forecasting is an important part of power system dispatching. Accurately forecasting electricity load have great impact on a number of departments in power systems. Compared to electricity load simulation (white-box model), electricity load forecasting (black-box model) does not require expertise in building construction. The development cycle of the electricity load forecasting model is much shorter than the design cycle of the electricity load simulation. Recent developments in machine learning have lead to the creation of models with strong fitting and accuracy to deal with nonlinear characteristics. Based on the real load dataset, this paper evaluates and compares the two mainstream short-term load forecasting techniques. Before the experiment, this paper first enumerates the common methods of short-term load forecasting and explains the principles of Long Short-term Memory Networks (LSTMs) and Support Vector Machines (SVM) used in this paper. Secondly, based on the characteristics of the electricity load dataset, data pre-processing and feature selection takes place. This paper describes the results of a controlled experiment to study the importance of feature selection. The LSTMs model and SVM model are applied to one-hour ahead load forecasting and one-day ahead peak and valley load forecasting. The predictive accuracy of these models are calculated based on the error between the actual and predicted loads, and the runtime of the model is recorded. The results show that the LSTMs model have a higher prediction accuracy when the load data is sufficient. However, the overall performance of the SVM model is better when the load data used to train the model is insufficient and the time cost is prioritized

    An improved LSTM-Seq2Seq-based forecasting method for electricity load

    Get PDF
    Power load forecasting has gained considerable research interest in recent years. The power load is vulnerable to randomness and uncertainty during power grid operations. Therefore, it is crucial to effectively predict the electric load and improve the accuracy of the prediction. This study proposes a novel power load forecasting method based on an improved long short-term memory (LSTM) neural network. Thus, an long short-term memory neural network model is established for power load forecasting, which supports variable-length inputs and outputs. The conventional convolutional neural network (CNN) and recurrent neural network (RNN) cannot reflect the sequence dependence between the output labels. Therefore, the LSTM-Seq2Seq prediction model was established by combining the sequence-to-sequence (Seq2Seq) structure with that of the long short-term memory model to improve the prediction accuracy. Four prediction models, i.e., long short-term memory, deep belief network (DBN), support vector machine (SVM), and LSTM-Seq2Seq, were simulated and tested on two different datasets. The results demonstrated the effectiveness of the proposed LSTM-Seq2Seq method. In the future, this model can be extended to more prediction application scenarios

    A Platform Independent Web-Application for Short-Term Electric Power Load Forecasting on a 33/11 kV Substation Using Regression Model

    Get PDF
    Short-term electric power load forecasting is a critical and essential task for utilities of the elec- tric power industry for proper energy trading and that enable the independent system operator to operate the network without any technical and economical is- sues. In this paper, machine learning model such as linear regression model is used to forecast the active power load one hour and one day ahead. Real time active power load data to train and test the machine learning model is collected from a 33/11 kV substation located in Telangana State, India. Based on the simu- lation results, it is observed that linear regression model can forecast the load with less mean absolute error i.e. 0.042 with training data and 0.045 with testing data in comparison with support vector regressor model for an hour ahead operation. Whereas in the case of the day ahead operation, linear regression model can forecast the load with less mean absolute error i.e. 0.055 with training data and 0.057 with testing data in comparison with support vector regressor model. A platform independent web application is developed to help the operators of the 33/11 kV substation which is located in Godishala, Telangana State, India

    Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter

    Full text link
    [EN] Forecasting electricity demand through time series is a tool used by transmission system operators to establish future operating conditions. The accuracy of these forecasts is essential for the precise development of activity. However, the accuracy of the forecasts is enormously subject to the calendar effect. The multiple seasonal Holt-Winters models are widely used due to the great precision and simplicity that they offer. Usually, these models relate this calendar effect to external variables that contribute to modification of their forecasts a posteriori. In this work, a new point of view is presented, where the calendar effect constitutes a built-in part of the Holt-Winters model. In particular, the proposed model incorporates discrete-interval moving seasonalities. Moreover, a clear example of the application of this methodology to situations that are difficult to treat, such as the days of Easter, is presented. The results show that the proposed model performs well, outperforming the regular Holt-Winters model and other methods such as artificial neural networks and Exponential Smoothing State Space Model with Box-Cox Transformation, ARMA Errors, Trend and Seasonal Components (TBATS) methods.The authors would like to thank the Spanish Ministry of Economy and Competitiveness for the support under project TIN2017-8888209C2-1-R.Trull, Ó.; García-Díaz, JC.; Troncoso, A. (2019). Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter. Energies. 12(6):1-16. https://doi.org/10.3390/en12061083S116126Garrués-Irurzun, J., & López-García, S. (2009). Red Eléctrica de España S.A.: Instrument of regulation and liberalization of the Spanish electricity market (1944–2004). Renewable and Sustainable Energy Reviews, 13(8), 2061-2069. doi:10.1016/j.rser.2009.01.028Roldan-Fernandez, J., Gómez-Quiles, C., Merre, A., Burgos-Payán, M., & Riquelme-Santos, J. (2018). Cross-Border Energy Exchange and Renewable Premiums: The Case of the Iberian System. Energies, 11(12), 3277. doi:10.3390/en11123277Contreras, J., Espinola, R., Nogales, F. J., & Conejo, A. J. (2003). ARIMA models to predict next-day electricity prices. IEEE Transactions on Power Systems, 18(3), 1014-1020. doi:10.1109/tpwrs.2002.804943Juberias, G., Yunta, R., Garcia Moreno, J., & Mendivil, C. (1999). A new ARIMA model for hourly load forecasting. 1999 IEEE Transmission and Distribution Conference (Cat. No. 99CH36333). doi:10.1109/tdc.1999.755371Bianco, V., Manca, O., & Nardini, S. (2009). Electricity consumption forecasting in Italy using linear regression models. Energy, 34(9), 1413-1421. doi:10.1016/j.energy.2009.06.034Taylor, J. W. (2003). Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 54(8), 799-805. doi:10.1057/palgrave.jors.2601589Taylor, J. W. (2010). Triple seasonal methods for short-term electricity demand forecasting. European Journal of Operational Research, 204(1), 139-152. doi:10.1016/j.ejor.2009.10.003Ko, C.-N., & Lee, C.-M. (2013). Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter. Energy, 49, 413-422. doi:10.1016/j.energy.2012.11.015Rana, M., & Koprinska, I. (2016). Forecasting electricity load with advanced wavelet neural networks. Neurocomputing, 182, 118-132. doi:10.1016/j.neucom.2015.12.004Baliyan, A., Gaurav, K., & Mishra, S. K. (2015). A Review of Short Term Load Forecasting using Artificial Neural Network Models. Procedia Computer Science, 48, 121-125. doi:10.1016/j.procs.2015.04.160Yang, Z., Ce, L., & Lian, L. (2017). Electricity price forecasting by a hybrid model, combining wavelet transform, ARMA and kernel-based extreme learning machine methods. Applied Energy, 190, 291-305. doi:10.1016/j.apenergy.2016.12.130Ghadimi, N., Akbarimajd, A., Shayeghi, H., & Abedinia, O. (2018). Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting. Energy, 161, 130-142. doi:10.1016/j.energy.2018.07.088Troncoso Lora, A., Riquelme Santos, J. M., Riquelme, J. C., Gómez Expósito, A., & Martínez Ramos, J. L. (2004). Time-Series Prediction: Application to the Short-Term Electric Energy Demand. Lecture Notes in Computer Science, 577-586. doi:10.1007/978-3-540-25945-9_57Martinez Alvarez, F., Troncoso, A., Riquelme, J. C., & Aguilar Ruiz, J. S. (2011). Energy Time Series Forecasting Based on Pattern Sequence Similarity. IEEE Transactions on Knowledge and Data Engineering, 23(8), 1230-1243. doi:10.1109/tkde.2010.227Cancelo, J. R., Espasa, A., & Grafe, R. (2008). Forecasting the electricity load from one day to one week ahead for the Spanish system operator. International Journal of Forecasting, 24(4), 588-602. doi:10.1016/j.ijforecast.2008.07.005TORRÓ, H., MENEU, V., & VALOR, E. (2003). Single Factor Stochastic Models with Seasonality Applied to Underlying Weather Derivatives Variables. The Journal of Risk Finance, 4(4), 6-17. doi:10.1108/eb022969Darbellay, G. A., & Slama, M. (2000). Forecasting the short-term demand for electricity. International Journal of Forecasting, 16(1), 71-83. doi:10.1016/s0169-2070(99)00045-xMoral-Carcedo, J., & Vicéns-Otero, J. (2005). Modelling the non-linear response of Spanish electricity demand to temperature variations. Energy Economics, 27(3), 477-494. doi:10.1016/j.eneco.2005.01.003Erişen, E., Iyigun, C., & Tanrısever, F. (2017). Short-term electricity load forecasting with special days: an analysis on parametric and non-parametric methods. Annals of Operations Research. doi:10.1007/s10479-017-2726-6Arora, S., & Taylor, J. W. (2013). Short-Term Forecasting of Anomalous Load Using Rule-Based Triple Seasonal Methods. IEEE Transactions on Power Systems, 28(3), 3235-3242. doi:10.1109/tpwrs.2013.2252929Arora, S., & Taylor, J. W. (2018). Rule-based autoregressive moving average models for forecasting load on special days: A case study for France. European Journal of Operational Research, 266(1), 259-268. doi:10.1016/j.ejor.2017.08.056Bermúdez, J. D. (2013). Exponential smoothing with covariates applied to electricity demand forecast. European J. of Industrial Engineering, 7(3), 333. doi:10.1504/ejie.2013.054134Göb, R., Lurz, K., & Pievatolo, A. (2013). Electrical load forecasting by exponential smoothing with covariates. Applied Stochastic Models in Business and Industry, 29(6), 629-645. doi:10.1002/asmb.2008Chatfield, C. (1978). The Holt-Winters Forecasting Procedure. Applied Statistics, 27(3), 264. doi:10.2307/234716

    Multi-objective particle swarm optimization algorithm for multi-step electric load forecasting

    Get PDF
    As energy saving becomes more and more popular, electric load forecasting has played a more and more crucial role in power management systems in the last few years. Because of the real-time characteristic of electricity and the uncertainty change of an electric load, realizing the accuracy and stability of electric load forecasting is a challenging task. Many predecessors have obtained the expected forecasting results by various methods. Considering the stability of time series prediction, a novel combined electric load forecasting, which based on extreme learning machine (ELM), recurrent neural network (RNN), and support vector machines (SVMs), was proposed. The combined model first uses three neural networks to forecast the electric load data separately considering that the single model has inevitable disadvantages, the combined model applies the multi-objective particle swarm optimization algorithm (MOPSO) to optimize the parameters. In order to verify the capacity of the proposed combined model, 1-step, 2-step, and 3-step are used to forecast the electric load data of three Australian states, including New South Wales, Queensland, and Victoria. The experimental results intuitively indicate that for these three datasets, the combined model outperforms all three individual models used for comparison, which demonstrates its superior capability in terms of accuracy and stability

    Short-term thermal and electric load forecasting in buildings

    Get PDF
    Increasing environmental awareness and energy costs encourage the increase of the contribution of renewable energy sources (RES) to the energy supply of buildings. However, the integration of RES and energy storage systems introduces significant challenges for the energy management system (EMS) of complex building energy systems. An energy management strategy based on fixed control rules may fail to efficiently operate such systems. These circumstances raise the need to apply advanced control strategies. A promising approach is model predictive control (MPC), which allows the consideration of the expected dynamic system behavior as well as of forecasts of the loads and of the renewable energy generated. Obviously, the performance of an MPC-based EMS crucially depends on the accuracy of the load forecasts. The goal of this paper is to compare the capabilities of neural networks (NNs) and of the least squares support vector machine (LS-SVM) in forecasting the hourly thermal and electric load of buildings. Two short-term load forecasting algorithms are evaluated which treat every hour of the day separately by an individual forecasting model. Additionally, the algorithms also distinguish between working days, weekends and holidays. In order to adapt to changing load patterns, the algorithms use the sliding window training approach. Both algorithms are tested using the measured thermal and electric load data of a large office building and of a small building which houses a kindergarten. In the tests conducted, in general, the forecasting algorithm based on the LS-SVM shows a better performance than the forecasting algorithm based on NNs. In addition, the LS-SVM involves fewer free parameters to be determined than a NN, which makes the former easier to apply. The results reported further indicate that the accurate forecasting of the load of a small building is the more challenging task compared to the load forecasting of a large office building. Furthermore, using a training window size of more than 20 days does not significantly improve the performance of the algorithms examined
    corecore