59 research outputs found

    Chosen-Prefix Collisions for MD5 and Applications

    Get PDF
    We present a novel, automated way to find differential paths for MD5. Its main application is in the construction of \emph{chosen-prefix collisions}. We have shown how, at an approximate expected cost of 2392^{39} calls to the MD5 compression function, for any two chosen message prefixes PP and PP', suffixes SS and SS' can be constructed such that the concatenated values PSP\|S and PSP'\|S' collide under MD5. The practical attack potential of this construction of chosen-prefix collisions is of greater concern than the MD5-collisions that were published before. This is illustrated by a pair of MD5-based X.509 certificates one of which was signed by a commercial Certification Authority (CA) as a legitimate website certificate, while the other one is a certificate for a rogue CA that is entirely under our control (cf.\ \url{http://www.win.tue.nl/hashclash/rogue-ca/}). Other examples, such as MD5-colliding executables, are presented as well. More details can be found on \url{http://www.win.tue.nl/hashclash/ChosenPrefixCollisions/}

    Reverse-Engineering of the Cryptanalytic Attack Used in the Flame Super-Malware

    Get PDF
    In May 2012, a highly advanced malware for espionage dubbed Flame was found targeting the Middle-East. As it turned out, it used a forged signature to infect Windows machines by MITM-ing Windows Update. Using counter-cryptanalysis, Stevens found that the forged signature was made possible by a chosen-prefix attack on MD5 \cite{DBLP:conf/crypto/Stevens13}. He uncovered some details that prove that this attack differs from collision attacks in the public literature, yet many questions about techniques and complexity remained unanswered. In this paper, we demonstrate that significantly more information can be deduced from the example collision. Namely, that these details are actually sufficient to reconstruct the collision attack to a great extent using some weak logical assumptions. In particular, we contribute an analysis of the differential path family for each of the four near-collision blocks, the chaining value differences elimination procedure and a complexity analysis of the near-collision block attacks and the associated birthday search for various parameter choices. Furthermore, we were able to prove a lower-bound for the attack's complexity. This reverse-engineering of a non-academic cryptanalytic attack exploited in the real world seems to be without precedent. As it allegedly was developed by some nation-state(s), we discuss potential insights to their cryptanalytic knowledge and capabilities

    Reverse-Engineering of the Cryptanalytic Attack Used in the Flame Super-Malware

    Get PDF
    In May 2012, a highly advanced malware for espionage dubbed Flame was found targeting the Middle-East. As it turned out, it used a forged signature to infect Windows machines by MITM-ing Windows Update. Using counter-cryptanalysis, Stevens found that the forged signature was made possible by a chosen-prefix attack on MD5 \cite{DBLP:conf/crypto/Stevens13}. He uncovered some details that prove that this attack differs from collision attacks in the public literature, yet many questions about techniques and complexity remained unanswered. In this paper, we demonstrate that significantly more information can be deduced from the example collision. Namely, that these details are actually sufficient to reconstruct the collision attack to a great extent using some weak logical assumptions. In particular, we contribute an analysis of the differential path family for each of the four near-collision blocks, the chaining value differences elimination procedure and a complexity analysis of the near-collision block attacks and the associated birthday search for various parameter choices. Furthermore, we were able to prove a lower-bound for the attack's complexity. This reverse-engineering of a non-academic cryptanalytic attack exploited in the real world seems to be without precedent. As it allegedly was developed by some nation-state(s) \cite{WashingtonPost_Flame,kaspersky_flame,crysis_flame}, we discuss potential insights to their cryptanalytic knowledge and capabilities

    Chosen-prefix collisions for MD5 and applications

    Get PDF
    We present a novel, automated way to find differential paths for MD5. Its main application is in the construction of chosen-prefix collisions. We have shown how, at an approximate expected cost of 239 calls to the MD5 compression function, for any two chosen message prefixes P and P', suffixes S and S' can be constructed such that the concatenated values P||S and P'||S' collide under MD5. The practical attack potential of this construction of chosen-prefix collisions is of greater concern than the MD5-collisions that were published before. This is illustrated by a pair of MD5-based X.509 certificates one of which was signed by a commercial Certification Authority (CA) as a legitimate website certificate, while the other one is a certificate for a rogue CA that is entirely under our control (cf. http://www.win.tue.nl/hashclash/rogue-ca/). Other examples, such as MD5-colliding executables, are presented as well. More details can be found on http://www.win.tue.nl/hashclash/ChosenPrefixCollisions/

    Are Certificate Thumbprints Unique?

    Get PDF
    A certificate thumbprint is a hash of a certificate, computed over all certificate data and its signature. Thumbprints are used as unique identifiers for certificates, in applications when making trust decisions, in configuration files, and displayed in interfaces. In this paper we show that thumbprints are not unique in two cases. First, we demonstrate that creating two X.509 certificates with the same thumbprint is possible when the hash function is weak, in particular when chosen-prefix collision attacks are possible. This type of collision attack is now practical for MD5, and expected to be practical for SHA-1 in the near future. Second, we show that certificates may be mauled in a way that they remain valid, but that they have different thumbprints. While these properties may be unexpected, we believe the scenarios where this could lead to a practical attack are limited and require very sophisticated attackers. We also checked the thumbprints of a large dataset of certificates used on the Internet, and found no evidence that would indicate thumbprints of certificates in use today are not unique

    SHA-1 is a Shambles: First Chosen-Prefix Collision on SHA-1 and Application to the PGP Web of Trust

    Get PDF
    International audienceThe SHA-1 hash function was designed in 1995 and has been widely used during two decades. A theoretical collision attack was first proposed in 2004 [29], but due to its high complexity it was only implemented in practice in 2017, using a large GPU cluster [23]. More recently, an almost practical chosen-prefix collision attack against SHA-1 has been proposed [12]. This more powerful attack allows to build colliding messages with two arbitrary prefixes, which is much more threatening for real protocols. In this paper, we report the first practical implementation of this attack, and its impact on real-world security with a PGP/GnuPG impersonation attack. We managed to significantly reduce the complexity of collision attacks against SHA-1: on an Nvidia GTX 970, identical-prefix collisions can now be computed with a complexity (expressed in terms of SHA-1 equivalents on this GPU) of 2 61.2 rather than 2 64.7 , and chosen-prefix collisions with a complexity of 2 63.4 rather than 2 67.1. When renting cheap GPUs, this translates to a cost of US11kforacollision,andUS 11k for a collision, and US 45k for a chosen-prefix collision, within the means of academic researchers. Our actual attack required two months of computations using 900 Nvidia GTX 1060 GPUs (we paid US$ 75k because GPU prices were higher, and we wasted some time preparing the attack). Therefore, the same attacks that have been practical on MD5 since 2009 are now practical on SHA-1. In particular, chosen-prefix collisions can break signature schemes and handshake security in secure channel protocols (TLS, SSH), if generated extremely quickly. We strongly advise to remove SHA-1 from those type of applications as soon as possible. We exemplify our cryptanalysis by creating a pair of PGP/GnuPG keys with different identities, but colliding SHA-1 certificates. A SHA-1 certification of the first key can therefore be transferred to the second key, leading to an impersonation attack. This proves that SHA-1 signatures now offer virtually no security in practice. The legacy branch of GnuPG still uses SHA-1 by default for identity certifications, but after notifying the authors, the modern branch now rejects SHA-1 signatures (the issue is tracked as CVE-2019-14855)

    Collision Attack on 5 Rounds of Grøstl

    Get PDF
    In this article, we describe a novel collision attack for up to 5 rounds of the Grøstl hash function. This significantly improves upon the best previously published results on 3 rounds. By using a new type of differential trail spanning over more than one message block we are able to construct collisions for Grøstl on 4 and 5 rounds with complexity of 2672^{67} and 21202^{120}, respectively. Both attacks need 2642^{64} memory. Due to the generic nature of our attack we can even construct meaningful collisions in the chosen-prefix setting with the same attack complexity

    Secure Communication using Identity Based Encryption

    Get PDF
    Secured communication has been widely deployed to guarantee confidentiality and\ud integrity of connections over untrusted networks, e.g., the Internet. Although\ud secure connections are designed to prevent attacks on the connection, they hide\ud attacks inside the channel from being analyzed by Intrusion Detection Systems\ud (IDS). Furthermore, secure connections require a certain key exchange at the\ud initialization phase, which is prone to Man-In-The-Middle (MITM) attacks. In this paper, we present a new method to secure connection which enables Intrusion Detection and overcomes the problem of MITM attacks. We propose to apply Identity Based Encryption (IBE) to secure a communication channel. The key escrow property of IBE is used to recover the decryption key, decrypt network traffic on the fly, and scan for malicious content. As the public key can be generated based on the identity of the connected server and its exchange is not necessary, MITM attacks are not easy to be carried out any more. A prototype of a modified TLS scheme is implemented and proved with a simple client-server application. Based on this prototype, a new IDS sensor is developed to be capable of identifying IBE encrypted secure traffic on the fly. A deployment architecture of the IBE sensor in a company network is proposed. Finally, we show the applicability by a practical experiment and some preliminary performance measurements
    corecore