1,367 research outputs found

    Forecasting bus passenger flows by using a clustering-based support vector regression approach

    Get PDF
    As a significant component of the intelligent transportation system, forecasting bus passenger flows plays a key role in resource allocation, network planning, and frequency setting. However, it remains challenging to recognize high fluctuations, nonlinearity, and periodicity of bus passenger flows due to varied destinations and departure times. For this reason, a novel forecasting model named as affinity propagation-based support vector regression (AP-SVR) is proposed based on clustering and nonlinear simulation. For the addressed approach, a clustering algorithm is first used to generate clustering-based intervals. A support vector regression (SVR) is then exploited to forecast the passenger flow for each cluster, with the use of particle swarm optimization (PSO) for obtaining the optimized parameters. Finally, the prediction results of the SVR are rearranged by chronological order rearrangement. The proposed model is tested using real bus passenger data from a bus line over four months. Experimental results demonstrate that the proposed model performs better than other peer models in terms of absolute percentage error and mean absolute percentage error. It is recommended that the deterministic clustering technique with stable cluster results (AP) can improve the forecasting performance significantly.info:eu-repo/semantics/publishedVersio

    Benchmarking Travel Time and Demand Prediction Methods Using Large-scale Metro Smart Card Data

    Get PDF
    Urban mass transit systems generate large volumes of data via automated systems established for ticketing, signalling, and other operational processes. This study is motivated by the observation that despite the availability of sophisticated quantitative methods, most public transport operators are constrained in exploiting the information their datasets contain. This paper intends to address this gap in the context of real-time demand and travel time prediction with smart card data. We comparatively benchmark the predictive performance of four quantitative prediction methods: multivariate linear regression (MVLR) and semiparametric regression (SPR) widely used in the econometric literature, and random forest regression (RFR) and support vector machine regression (SVMR) from machine learning. We find that the SVMR and RFR methods are the most accurate in travel flow and travel time prediction, respectively. However, we also find that the SPR technique offers lower computation time at the expense of minor inefficiency in predictive power in comparison with the two machine learning methods

    How machine learning informs ride-hailing services: A survey

    Get PDF
    In recent years, online ride-hailing services have emerged as an important component of urban transportation system, which not only provide significant ease for residents’ travel activities, but also shape new travel behavior and diversify urban mobility patterns. This study provides a thorough review of machine-learning-based methodologies for on-demand ride-hailing services. The importance of on-demand ride-hailing services in the spatio-temporal dynamics of urban traffic is first highlighted, with machine-learning-based macro-level ride-hailing research demonstrating its value in guiding the design, planning, operation, and control of urban intelligent transportation systems. Then, the research on travel behavior from the perspective of individual mobility patterns, including carpooling behavior and modal choice behavior, is summarized. In addition, existing studies on order matching and vehicle dispatching strategies, which are among the most important components of on-line ride-hailing systems, are collected and summarized. Finally, some of the critical challenges and opportunities in ride-hailing services are discussed

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Short Run Transit Route Planning Decision Support System Using a Deep Learning-Based Weighted Graph

    Full text link
    Public transport routing plays a crucial role in transit network design, ensuring a satisfactory level of service for passengers. However, current routing solutions rely on traditional operational research heuristics, which can be time-consuming to implement and lack the ability to provide quick solutions. Here, we propose a novel deep learning-based methodology for a decision support system that enables public transport (PT) planners to identify short-term route improvements rapidly. By seamlessly adjusting specific sections of routes between two stops during specific times of the day, our method effectively reduces times and enhances PT services. Leveraging diverse data sources such as GTFS and smart card data, we extract features and model the transportation network as a directed graph. Using self-supervision, we train a deep learning model for predicting lateness values for road segments. These lateness values are then utilized as edge weights in the transportation graph, enabling efficient path searching. Through evaluating the method on Tel Aviv, we are able to reduce times on more than 9\% of the routes. The improved routes included both intraurban and suburban routes showcasing a fact highlighting the model's versatility. The findings emphasize the potential of our data-driven decision support system to enhance public transport and city logistics, promoting greater efficiency and reliability in PT services

    A Survey of COVID-19 in Public Transportation: Transmission Risk, Mitigation and Prevention

    Get PDF
    The COVID-19 pandemic is posing significant challenges to public transport operators by drastically reducing demand while also requiring them to implement measures that minimize risks to the health of the passengers. While the collective scientific understanding of the SARS-CoV-2 virus and COVID-19 pandemic are rapidly increasing, currently there is a lack of understanding of how the COVID-19 relates to public transport operations. This article presents a comprehensive survey of the current research on COVID-19 transmission mechanisms and how they relate to public transport. We critically assess literature through a lens of disaster management and survey the main transmission mechanisms, forecasting, risks, mitigation, and prevention mechanisms. Social distancing and control on passenger density are found to be the most effective mechanisms. Computing and digital technology can support risk control. Based on our survey, we draw guidelines for public transport operators and highlight open research challenges to establish a research roadmap for the path forward.Peer reviewe
    • …
    corecore