476 research outputs found

    Where does the physics of extreme gravitational collapse reside?

    Get PDF
    The gravitational collapse of massive stars serves to manifest the most severe deviations of general relativity with respect to Newtonian gravity: the formation of horizons and spacetime singularities. Both features have proven to be catalysts of deep physical developments, especially when combined with the principles of quantum mechanics. Nonetheless, it is seldom remarked that it is hardly possible to combine all these developments into a unified theoretical model, while maintaining reasonable prospects for the independent experimental corroboration of its different parts. In this paper we review the current theoretical understanding of the physics of gravitational collapse in order to highlight this tension, stating the position that the standard view on evaporating black holes stands for. This serves as the motivation for the discussion of a recent proposal that offers the opposite perspective, represented by a set of geometries that regularize the classical singular behavior and present modifications of the near-horizon Schwarzschild geometry as the result of the propagation of non-perturbative ultraviolet effects originated in regions of high curvature. We present an extensive exploration of the necessary steps on the explicit construction of these geometries, and discuss how this proposal could change our present understanding of astrophysical black holes and even offer the possibility of detecting genuine ultraviolet effects on future gravitational wave experiments.Comment: 43 pages, 1 figure. Review article with new results on the black to white hole transition. Prepared for the special issue "Open Questions in Black Hole Physics" edited by Gonzalo J. Olm

    Shock-Wave Refinement of the Friedmann-Robertson-Walker Metric

    Full text link
    The mathematics of general relativistic shock waves is introduced and considered in a cosmological context. In particular, an expanding Friedmann-Roberson-Walker metric is matched to a Tolman-Oppenheimer-Volkoff metric across a spherical shock surface. This is the general relativistic analogue of a shock-wave explosion within a static singular isothermal fluid sphere and may be regarded as a model for the Big Bang. These shock waves are constructed both within and beyond the Hubble radius, which corresponds to a universe outside and inside its Schwarzschild radius respectively. Certain self-similar perturbations of the FRW metric lead to an accelerated expansion, even without a cosmological constant, and thus it is conjectured that such a mechanism may account for the anomalous acceleration observed today without recourse to dark energy

    General-relativistic resistive magnetohydrodynamics in three dimensions: Formulation and tests

    Full text link
    We present a new numerical implementation of the general-relativistic resistive magnetohydrodynamics (MHD) equations within the Whisky code. The numerical method adopted exploits the properties of implicit-explicit Runge-Kutta numerical schemes to treat the stiff terms that appear in the equations for large electrical conductivities. Using tests in one, two, and three dimensions, we show that our implementation is robust and recovers the ideal-MHD limit in regimes of very high conductivity. Moreover, the results illustrate that the code is capable of describing scenarios in a very wide range of conductivities. In addition to tests in flat spacetime, we report simulations of magnetized nonrotating relativistic stars, both in the Cowling approximation and in dynamical spacetimes. Finally, because of its astrophysical relevance and because it provides a severe testbed for general-relativistic codes with dynamical electromagnetic fields, we study the collapse of a nonrotating star to a black hole. We show that also in this case our results on the quasinormal mode frequencies of the excited electromagnetic fields in the Schwarzschild background agree with the perturbative studies within 0.7% and 5.6% for the real and the imaginary part of the l=1 mode eigenfrequency, respectively. Finally we provide an estimate of the electromagnetic efficiency of this process.Comment: 22 pages, 19 figure

    Spacetime Singularities

    Full text link
    We present here an overview of our basic understanding and recent developments on spacetime singularities in the Einstein theory of gravity. Several issues related to physical significance and implications of singularities are discussed. The nature and existence of singularities are considered which indicate the formation of super ultra-dense regions in the universe as predicted by the general theory of relativity. Such singularities develop during the gravitational collapse of massive stars and in cosmology at the origin of the universe. Possible astrophysical implications of the occurrence of singularities in the spacetime universe are indicated. We discuss in some detail the profound and key fundamental issues that the singularities give rise to, such as the cosmic censorship and predictability in the universe, naked singularities in gravitational collapse and their relevance in black hole physics today, and their astrophysical implications in modern relativistic astrophysics and cosmology.Comment: 45 pages, LaTex; Invited Review article for the `Springer Handbook of Spacetime' (eds A. Ashtekar and V. Petkov

    Recent developments in gravitational collapse and spacetime singularities

    Get PDF
    It is now known that when a massive star collapses under the force of its own gravity, the final fate of such a continual gravitational collapse will be either a black hole or a naked singularity under a wide variety of physically reasonable circumstances within the framework of general theory of relativity. The research of recent years has provided con- siderable clarity and insight on stellar collapse, black holes and the nature and structure of spacetime singularities. We discuss several of these developments here. There are also important fundamental questions that remain unanswered on the final fate of collapse of a massive matter cloud in gravitation theory, especially on naked singularities which are hypothetical astrophysical objects and on the nature of cosmic censorship hypothesis. These issues have key implications for our understanding on black hole physics today, its astrophysical applications, and for certain basic questions in cosmology and possible quantum theories of gravity. We consider these issues here and summarize recent results and current progress in these directions. The emerging astrophysical and observational perspectives and implications are dicussed, with particular reference to the properties of accretion discs around black holes and naked singularities, which may provide charac-teristic signatures and could help distinguish these object

    Recent developments in gravitational collapse and spacetime singularities

    Get PDF
    It is now known that when a massive star collapses under the force of its own gravity, the final fate of such a continual gravitational collapse will be either a black hole or a naked singularity under a wide variety of physically reasonable circumstances within the framework of general theory of relativity. The research of recent years has provided con- siderable clarity and insight on stellar collapse, black holes and the nature and structure of spacetime singularities. We discuss several of these developments here. There are also important fundamental questions that remain unanswered on the final fate of collapse of a massive matter cloud in gravitation theory, especially on naked singularities which are hypothetical astrophysical objects and on the nature of cosmic censorship hypothesis. These issues have key implications for our understanding on black hole physics today, its astrophysical applications, and for certain basic questions in cosmology and possible quantum theories of gravity. We consider these issues here and summarize recent results and current progress in these directions. The emerging astrophysical and observational perspectives and implications are dicussed, with particular reference to the properties of accretion discs around black holes and naked singularities, which may provide charac-teristic signatures and could help distinguish these object

    Gravitational-wave research as an emerging field in the Max Planck Society. The long roots of GEO600 and of the Albert Einstein Institute

    Full text link
    On the occasion of the 50th anniversary since the beginning of the search for gravitational waves at the Max Planck Society, and in coincidence with the 25th anniversary of the foundation of the Albert Einstein Institute, we explore the interplay between the renaissance of general relativity and the advent of relativistic astrophysics following the German early involvement in gravitational-wave research, to the point when gravitational-wave detection became established by the appearance of full-scale detectors and international collaborations. On the background of the spectacular astrophysical discoveries of the 1960s and the growing role of relativistic astrophysics, Ludwig Biermann and his collaborators at the Max Planck Institute for Astrophysics in Munich became deeply involved in research related to such new horizons. At the end of the 1960s, Joseph Weber's announcements claiming detection of gravitational waves sparked the decisive entry of this group into the field, in parallel with the appointment of the renowned relativist Juergen Ehlers. The Munich area group of Max Planck institutes provided the fertile ground for acquiring a leading position in the 1970s, facilitating the experimental transition from resonant bars towards laser interferometry and its innovation at increasingly large scales, eventually moving to a dedicated site in Hannover in the early 1990s. The Hannover group emphasized perfecting experimental systems at pilot scales, and never developed a full-sized detector, rather joining the LIGO Scientific Collaboration at the end of the century. In parallel, the Max Planck Institute for Gravitational Physics (Albert Einstein Institute) had been founded in Potsdam, and both sites, in Hannover and Potsdam, became a unified entity in the early 2000s and were central contributors to the first detection of gravitational waves in 2015.Comment: 94 pages. Enlarged version including new results from further archival research. A previous version appears as a chapter in the volume The Renaissance of General Relativity in Context, edited by A. Blum, R. Lalli and J. Renn (Boston: Birkhauser, 2020

    Mechanics and Equilibrium Geometry of Black Holes, Membranes, and Strings

    Full text link
    This course is designed to give a mathematically coherent introduction to the classical thory of black holes and also of strings and membranes (which are like the horizon of a black hole in being examples of physical systems based on a dynamically evolving world sheet) giving particular attention given to the study of the geometry of their equilibrium states.Comment: 93 page latex file (with typo corrections and redrafted C.P. diagrams) of contribution to BLACK HOLE PHYSICS (NATO ASI C364) ed. V. de Sabbata, Z. Zhang (Kluwer, Dordrecht, 1992) 283-35
    corecore