24 research outputs found

    A High-Frequency Surface Wave Radar Simulation Using FMCW Technique for Ship Detection

    Get PDF
    Indonesia is an archipelagic country with a vast sea area. This vast sea area becomes a challenge in conducting regional surveillance to maintain maritime conditions. The use of buoys and satellites still has shortcomings in carrying out surveillance despite its excellent surveillance capabilities. A high-frequency radar technology with 3-30 MHz frequency and surface wave propagation are very suitable because it has a radar range that can cross the horizon or commonly refer to as Over the Horizon (OTH). The Frequency Modulated Continuous Wave (FMCW) technique on this radar obtains distance and velocity information by a continuously transmitted frequency modulation. The use of radar in Indonesia for marine surveillance is still infrequent. Therefore, it is relatively difficult to conduct testing and obtain data. In addition, the direct examination requires extended time, so a simulation program is needed. This paper discusses the design of a High-Frequency Surface Wave Radar (HFSWR) simulation program using FMCW modulation technique. The simulation program detected two objects based on time delays due to the distance and velocity of the object with a maximum range of 350 km. It displayed the results in an informative manner. The object detection was based on the results of the Fast Fourier Transform (FFT) from the mixed signals. The mixed signal is a combination of transmitted signal and reflected signal in which there are time delay components due to the object. The simulation program had been tested with input values of distance and velocity that vary, both for one object and two objects, in the radial direction. It generated output that was close to the input value with a level of accuracy of ± 2 km

    Space-time Characteristics and Experimental Analysis of Broadening First-order Sea Clutter in HF Hybrid Sky-surface Wave Radar

    Get PDF
    In high frequency (HF) hybrid sky-surface wave radar, the first-order sea clutter broadening is very complex and serious under the influence of ionosphere and bistatic angle, which affects the detection of ship target. This paper analyzes the space-time characteristics based on the HF sky-surface wave experimental system. We first introduce the basic structure, working principle and position principle based on our experimental system. Also analyzed is the influence of ionosphere and bistatic angle on the space-time coupling characteristics of broadening first-order sea clutter and the performance of space-time adaptive processing (STAP). Finally, the results of theoretic analysis are examined with the experimental data. Simulation results show that the results of experiment consist with that of theoretic analysis

    Editorial for the Special Issue "Remote Sensing of Target Detection in Marine Environment"

    Get PDF
    First paragraph: Remote sensing is a powerful tool used to obtain an unprecedented amount of information about the ocean from a distance, usually from satellites or aircrafts. Measurements collected by active and passive remote sensing instruments can be used for both marine and maritime applications. They allow monitoring of vast areas of the Earth that are difficult to access and sample using traditional methods. Within this context, the observation of targets at sea, e.g.; man-made targets (ships or oil/gas rigs/platforms and wind turbines) and natural targets (icebergs, surfactants, etc.) is nowadays a very hot-topic in the field of global monitoring of environment and security

    Radar cross-section (RCS) analysis of high frequency surface wave radar targets

    Get PDF
    Realistic high frequency surface wave radar (HFSWR) targets are investigated numerically in terms of electromagnetic wave - target interactions. Radar cross sections (RCS) of these targets are simulated via both the finite-difference time-domain (FDTD) method and the Method of Moments (MoM). The virtual RCS prediction tool that was introduced in previous work is used for these investigations. The virtual tool automatically creates the discrete FDTD model of the target under investigation and performs the FDTD RCS analysis. It also automatically constructs a MoM wire grid model of the target; therefore, it is also possible to compare FDTD results against the MoM-based NEC (Numerical Electromagnetic Code) data. Bi-static RCS patterns under a variety of illuminations over the whole HF band (3-30 MHz) are presented. The mono-static RCS vs. frequency of these targets is also given

    System for surveillance of maritime traffic using the network of over-the-horizon radars

    Get PDF
    Ova disertacija se bavi optimizacijom i prilagođenjem algoritama za praćenje ciljeva za potrebe ublažavanja uticaja štetnih refleksija na proces praćenja ciljeva kod izahorizontskih radara sa površinskim talasom (HFSW radari), upotrebljenih za osmatranje pomorskih ciljeva i konceptualizacijom i realizacijom sistema za integrisano pomorsko praćenje ciljeva baziranog na HFSWR mrežama.This dissertation deals with the optimization and adaptation of target tracking algorithms to mitigate the impact of harmful reflections on the target tracking process in over-the-horizon high frequency surface wave radar (HFSW radar), used to observe maritime targets and conceptualize and implement an integrated maritime surveillance system based on HFSWR networks..

    High frequency surface wave radar demonstrator

    Get PDF
    High Frequency Surface Wave Radar (HFSWR) is used around the globe for the mapping of sea currents and coastal monitoring of the Exclusive Economic Zone. Decision to build an HF radar at the University of Cape Town (UCT) was made by Daniel O’Hagan and Andrew Wilkinson in February 2015 immediately after seeing a demonstration of the CODAR system at IMT. Their intention was subsequently discussed at several meetings, including a South African Radar Interest Group (SARIG) meeting and one at IMT in order to gauge interest and raise funding. There was both interest (mainly for ocean current monitoring) and scepticism (expressed by CSIR and SARIG members) of the value of HF radar for ship monitoring. This reports the design, construction, test, and evaluation of the UCT HFSWR demonstrator. A modular approach was taken in its design and construction making it easy to replicate and upscale. A pillar of this work is to prove the feasibility of a software defined radar (SDR) based HF radar demonstrator. Every part of the demonstrator was designed and constructed from scratch as UCT had no prior HF activities, and therefore no legacy antennas or components to utilise. A low-cost RF frontend follows the HF antennas, which were also designed for this project. Combined with an SDR platforn known as the Red Pitaya (RP), a complete HF radar demonstrator was assembled and trials were conducted at the UCT rugby field and at the IMT facilities in Simon’s Town. A preliminary assessment of the results reveal the effects of Bragg resonance scatter and detection of two stationary targets (mountains) distinguishable by both range and azimuth. This assessment of the results indicates that the demonstrator is operational

    Advanced Geoscience Remote Sensing

    Get PDF
    Nowadays, advanced remote sensing technology plays tremendous roles to build a quantitative and comprehensive understanding of how the Earth system operates. The advanced remote sensing technology is also used widely to monitor and survey the natural disasters and man-made pollution. Besides, telecommunication is considered as precise advanced remote sensing technology tool. Indeed precise usages of remote sensing and telecommunication without a comprehensive understanding of mathematics and physics. This book has three parts (i) microwave remote sensing applications, (ii) nuclear, geophysics and telecommunication; and (iii) environment remote sensing investigations

    A small vessel detection using a co-located multi-frequency FMCW MIMO radar

    Get PDF
    Small vessels detection is a known issue due to its low radar cross section (RCS). An existing shore-based vessel tracking radar is for long-distance commercial vessels detection. Meanwhile, a vessel-mounted radar system known for its reliability has a limitation due to its single radar coverage. The paper presented a co-located frequency modulated continuous waveform (FMCW) maritime radar for small vessel detection utilising a multiple-input multiple-output (MIMO) configuration. The radar behaviour is numerically simulated for detecting a Swerling 1 target which resembles small maritime’s vessels. The simulated MIMO configuration comprised two transmitting and receiving nodes. The proposal is to utilize a multi-frequency FMCW MIMO configuration in a maritime environment by applying the spectrum averaging (SA) to fuse MIMO received signals for range and velocity estimation. The analysis was summarised and displayed in terms of estimation error performance, probability of error and average error. The simulation outcomes an improvement of 2.2 dB for a static target, and 0.1 dB for a moving target, in resulting the 20% probability of range error with the MIMO setup. A moving vessel's effect was observed to degrade the range error estimation performance between 0.6 to 2.7 dB. Meanwhile, the proposed method was proven to improve the 20% probability of velocity error by 1.75 dB. The impact of multi-frequency MIMO was also observed to produce better average error performance

    Comparing spatial patterns of marine vessels between vessel-tracking data and satellite imagery

    Get PDF
    Monitoring marine use is essential to effective management but is extremely challenging, particularly where capacity and resources are limited. To overcome these limitations, satellite imagery has emerged as a promising tool for monitoring marine vessel activities that are difficult to observe through publicly available vessel-tracking data. However, the broader use of satellite imagery is hindered by the lack of a clear understanding of where and when it would bring novel information to existing vessel-tracking data. Here, we outline an analytical framework to (1) automatically detect marine vessels in optical satellite imagery using deep learning and (2) statistically contrast geospatial distributions of vessels with the vessel-tracking data. As a proof of concept, we applied our framework to the coastal regions of Peru, where vessels without the Automatic Information System (AIS) are prevalent. Quantifying differences in spatial information between disparate datasets—satellite imagery and vessel-tracking data—offers insight into the biases of each dataset and the potential for additional knowledge through data integration. Our study lays the foundation for understanding how satellite imagery can complement existing vessel-tracking data to improve marine oversight and due diligence

    MIMO High Frequency Surface Wave Radar Using Sparse Frequency FMCW Signals

    Get PDF
    The heavily congested radio frequency environment severely limits the signal bandwidth of the high frequency surface wave radar (HFSWR). Based on the concept of multiple-input multiple-output (MIMO) radar, we propose a MIMO sparse frequency HFSWR system to synthesize an equivalent large bandwidth waveform in the congested HF band. The utilized spectrum of the proposed system is discontinuous and irregularly distributed between different transmitting sensors. We investigate the sparse frequency modulated continuous wave (FMCW) signal and the corresponding deramping based receiver and signal processor specially. A general processing framework is presented for the proposed system. The crucial step is the range-azimuth processing and the sparsity of the carrier frequency causes the two-dimensional periodogram to fail when applied here. Therefore, we introduce the iterative adaptive approach (IAA) in the range-azimuth imaging. Based on the initial 1D IAA algorithm, we propose a modified 2D IAA which particularly fits the deramping processing based range-azimuth model. The proposed processing framework for MIMO sparse frequency FMCW HFSWR with the modified 2D IAA applied is shown to have a high resolution and be able to provide an accurate and clear range-azimuth image which benefits the following detection process
    corecore