1,711 research outputs found

    Index to NASA Tech Briefs, 1975

    Get PDF
    This index contains abstracts and four indexes--subject, personal author, originating Center, and Tech Brief number--for 1975 Tech Briefs

    Impact of Antennas on the Anchor-less Indoor Localization of a Static IR-UWB Pair

    Get PDF
    International audienceThis paper investigates the impact of realistic antennas on joint anchor-less localization and indoor characterization based on Impulse Radio (IR) Ultra Wideband (UWB) communications. In this frame, the Maximum Averaged Likelihood (MAL) algorithm and its extended version are considered, both relying on a tree approach consisting in two stages. The first part of the process, which is common to both algorithms, exploits the cross-correlation between received and locally predicted paths. The second stage calculates the averaged likelihood of measured path parameters obtained in the previous step, but different measurements are used for MAL and extended MAL (eMAL). In the first algorithm, only the Angle of Incidence (AoI) and the Time of Arrival (ToA) are considered, whereas the eMAL tree algorithm also accounts for two couples of Angles of Departure (AoDs) and Angles of Arrival (AoAs). The estimation errors of both nodes coordinates and room dimension obtained with the two algorithms are compared for three realistic UWB antennas. Finally, the remaining algorithm-independent ambiguities (i.e. resulting from scenario and geometry) are discussed

    Simulation-Oriented Methodology for Distortion Minimisation during Laser Beam Welding

    Get PDF
    Distortion is one of the drawbacks of any welding process, most of the time needed to be suppressed. One doubtful factor that could affect welding deformation is the shape of the liquid melt pool, which can be modified via variation of process parameters. The aim of this work was to numerically study the dynamics of the weld pool and its geometrical influence on welding distortion during laser beam welding. To achieve such a goal, a promising novel process simulation model, employed in investigating the keyhole and weld pool dynamics, has successfully been invented. The model incorporated all distinctive behaviours of the laser beam welding process. Moreover, identification of the correlation between the weld pool geometry and welding distortion as well as, eventually, weld pool shapes that favour distortion minimisation has also been simulatively demonstrated

    Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics 2015

    Get PDF
    This volume contains the full papers accepted for presentation at the ECCOMAS Thematic Conference on Multibody Dynamics 2015 held in the Barcelona School of Industrial Engineering, Universitat Politècnica de Catalunya, on June 29 - July 2, 2015. The ECCOMAS Thematic Conference on Multibody Dynamics is an international meeting held once every two years in a European country. Continuing the very successful series of past conferences that have been organized in Lisbon (2003), Madrid (2005), Milan (2007), Warsaw (2009), Brussels (2011) and Zagreb (2013); this edition will once again serve as a meeting point for the international researchers, scientists and experts from academia, research laboratories and industry working in the area of multibody dynamics. Applications are related to many fields of contemporary engineering, such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, mechatronic and autonomous systems, smart structures, biomechanical systems and nanotechnologies. The topics of the conference include, but are not restricted to: ● Formulations and Numerical Methods ● Efficient Methods and Real-Time Applications ● Flexible Multibody Dynamics ● Contact Dynamics and Constraints ● Multiphysics and Coupled Problems ● Control and Optimization ● Software Development and Computer Technology ● Aerospace and Maritime Applications ● Biomechanics ● Railroad Vehicle Dynamics ● Road Vehicle Dynamics ● Robotics ● Benchmark ProblemsPostprint (published version

    MEMS Accelerometers

    Get PDF
    Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc
    corecore