2,476 research outputs found

    Artificial Neural Networks and Evolutionary Computation in Remote Sensing

    Get PDF
    Artificial neural networks (ANNs) and evolutionary computation methods have been successfully applied in remote sensing applications since they offer unique advantages for the analysis of remotely-sensed images. ANNs are effective in finding underlying relationships and structures within multidimensional datasets. Thanks to new sensors, we have images with more spectral bands at higher spatial resolutions, which clearly recall big data problems. For this purpose, evolutionary algorithms become the best solution for analysis. This book includes eleven high-quality papers, selected after a careful reviewing process, addressing current remote sensing problems. In the chapters of the book, superstructural optimization was suggested for the optimal design of feedforward neural networks, CNN networks were deployed for a nanosatellite payload to select images eligible for transmission to ground, a new weight feature value convolutional neural network (WFCNN) was applied for fine remote sensing image segmentation and extracting improved land-use information, mask regional-convolutional neural networks (Mask R-CNN) was employed for extracting valley fill faces, state-of-the-art convolutional neural network (CNN)-based object detection models were applied to automatically detect airplanes and ships in VHR satellite images, a coarse-to-fine detection strategy was employed to detect ships at different sizes, and a deep quadruplet network (DQN) was proposed for hyperspectral image classification

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Ship Detection and Segmentation using Image Correlation

    Get PDF
    There have been intensive research interests in ship detection and segmentation due to high demands on a wide range of civil applications in the last two decades. However, existing approaches, which are mainly based on statistical properties of images, fail to detect smaller ships and boats. Specifically, known techniques are not robust enough in view of inevitable small geometric and photometric changes in images consisting of ships. In this paper a novel approach for ship detection is proposed based on correlation of maritime images. The idea comes from the observation that a fine pattern of the sea surface changes considerably from time to time whereas the ship appearance basically keeps unchanged. We want to examine whether the images have a common unaltered part, a ship in this case. To this end, we developed a method - Focused Correlation (FC) to achieve robustness to geometric distortions of the image content. Various experiments have been conducted to evaluate the effectiveness of the proposed approach.Comment: 8 pages, to be published in proc. of conference IEEE SMC 201

    Sea Ice Extraction via Remote Sensed Imagery: Algorithms, Datasets, Applications and Challenges

    Full text link
    The deep learning, which is a dominating technique in artificial intelligence, has completely changed the image understanding over the past decade. As a consequence, the sea ice extraction (SIE) problem has reached a new era. We present a comprehensive review of four important aspects of SIE, including algorithms, datasets, applications, and the future trends. Our review focuses on researches published from 2016 to the present, with a specific focus on deep learning-based approaches in the last five years. We divided all relegated algorithms into 3 categories, including classical image segmentation approach, machine learning-based approach and deep learning-based methods. We reviewed the accessible ice datasets including SAR-based datasets, the optical-based datasets and others. The applications are presented in 4 aspects including climate research, navigation, geographic information systems (GIS) production and others. It also provides insightful observations and inspiring future research directions.Comment: 24 pages, 6 figure

    Ship-Iceberg Discrimination in Sentinel-2 Multispectral Imagery by Supervised Classification

    Get PDF
    The European Space Agency Sentinel-2 satellites provide multispectral images with pixel sizes down to 10 m. This high resolution allows for fast and frequent detection, classification and discrimination of various objects in the sea, which is relevant in general and specifically for the vast Arctic environment. We analyze several sets of multispectral image data from Denmark and Greenland fall and winter, and describe a supervised search and classification algorithm based on physical parameters that successfully finds and classifies all objects in the sea with reflectance above a threshold. It discriminates between objects like ships, islands, wakes, and icebergs, ice floes, and clouds with accuracy better than 90%. Pan-sharpening the infrared bands leads to classification and discrimination of ice floes and clouds better than 95%. For complex images with abundant ice floes or clouds, however, the false alarm rate dominates for small non-sailing boats

    A Comparison of Fixed Threshold CFAR and CNN Ship Detection Methods for S-band NovaSAR Images

    Get PDF
    NovaSAR is a commercial S-band Synthetic Aperture Radar (SAR) small satellite, built and operated by SSTL in the UK. One of its primary mission objectives is to carry out maritime surveillance and monitoring for security and defence applications. An investigation was carried out into comparing and contrasting conventional and new methods to perform automated ship detection in NovaSAR images. The outcome of this investigation could show the potential effectiveness of ship detection using spaceborne S-band SAR for Maritime Domain Awareness (MDA). The conventional approach is to apply a suitable distribution model to characterise sea surface clutter, followed by the implementation of a fixed threshold, Constant False Alarm Rate (CFAR) detection algorithm. In comparison, a RetinaNet-based convolutional neural network (CNN)solution was developed and trained on an open-source C-band dataset in order to determine the validity of applying non-native training data to S-band imagery. The detection performance was then compared with the CFAR technique, finding that for two selected test acquisitions a CNN-based ship detection algorithm was able to outperform a fixed threshold, CFAR-based method in the absence of native training data. CNN ship detection performance was further improved by applying transfer learning to a native S-band NovaSAR image dataset
    • …
    corecore