2,491 research outputs found

    Efficient tilings of de Bruijn and Kautz graphs

    Full text link
    Kautz and de Bruijn graphs have a high degree of connectivity which makes them ideal candidates for massively parallel computer network topologies. In order to realize a practical computer architecture based on these graphs, it is useful to have a means of constructing a large-scale system from smaller, simpler modules. In this paper we consider the mathematical problem of uniformly tiling a de Bruijn or Kautz graph. This can be viewed as a generalization of the graph bisection problem. We focus on the problem of graph tilings by a set of identical subgraphs. Tiles should contain a maximal number of internal edges so as to minimize the number of edges connecting distinct tiles. We find necessary and sufficient conditions for the construction of tilings. We derive a simple lower bound on the number of edges which must leave each tile, and construct a class of tilings whose number of edges leaving each tile agrees asymptotically in form with the lower bound to within a constant factor. These tilings make possible the construction of large-scale computing systems based on de Bruijn and Kautz graph topologies.Comment: 29 pages, 11 figure

    On hardware for generating routes in Kautz digraphs

    Get PDF
    In this paper we present a hardware implementation of an algorithm for generating node disjoint routes in a Kautz network. Kautz networks are based on a family of digraphs described by W.H. Kautz[Kautz 68]. A Kautz network with in-degree and out-degree d has N = dk + dkÂż1 nodes (for any cardinals d, k>0). The diameter is at most k, the degree is fixed and independent of the network size. Moreover, it is fault-tolerant, the connectivity is d and the mapping of standard computation graphs such as a linear array, a ring and a tree on a Kautz network is straightforward.\ud The network has a simple routing mechanism, even when nodes or links are faulty. Imase et al. [Imase 86] showed the existence of d node disjoint paths between any pair of vertices. In Smit et al. [Smit 91] an algorithm is described that generates d node disjoint routes between two arbitrary nodes in the network. In this paper we present a simple and fast hardware implementation of this algorithm. It can be realized with standard components (Field Programmable Gate Arrays)

    The Collatz conjecture and De Bruijn graphs

    Full text link
    We study variants of the well-known Collatz graph, by considering the action of the 3n+1 function on congruence classes. For moduli equal to powers of 2, these graphs are shown to be isomorphic to binary De Bruijn graphs. Unlike the Collatz graph, these graphs are very structured, and have several interesting properties. We then look at a natural generalization of these finite graphs to the 2-adic integers, and show that the isomorphism between these infinite graphs is exactly the conjugacy map previously studied by Bernstein and Lagarias. Finally, we show that for generalizations of the 3n+1 function, we get similar relations with 2-adic and p-adic De Bruijn graphs.Comment: 9 pages, 8 figure

    HYPA: Efficient Detection of Path Anomalies in Time Series Data on Networks

    Full text link
    The unsupervised detection of anomalies in time series data has important applications in user behavioral modeling, fraud detection, and cybersecurity. Anomaly detection has, in fact, been extensively studied in categorical sequences. However, we often have access to time series data that represent paths through networks. Examples include transaction sequences in financial networks, click streams of users in networks of cross-referenced documents, or travel itineraries in transportation networks. To reliably detect anomalies, we must account for the fact that such data contain a large number of independent observations of paths constrained by a graph topology. Moreover, the heterogeneity of real systems rules out frequency-based anomaly detection techniques, which do not account for highly skewed edge and degree statistics. To address this problem, we introduce HYPA, a novel framework for the unsupervised detection of anomalies in large corpora of variable-length temporal paths in a graph. HYPA provides an efficient analytical method to detect paths with anomalous frequencies that result from nodes being traversed in unexpected chronological order.Comment: 11 pages with 8 figures and supplementary material. To appear at SIAM Data Mining (SDM 2020

    Partitioning de Bruijn Graphs into Fixed-Length Cycles for Robot Identification and Tracking

    Full text link
    We propose a new camera-based method of robot identification, tracking and orientation estimation. The system utilises coloured lights mounted in a circle around each robot to create unique colour sequences that are observed by a camera. The number of robots that can be uniquely identified is limited by the number of colours available, qq, the number of lights on each robot, kk, and the number of consecutive lights the camera can see, ℓ\ell. For a given set of parameters, we would like to maximise the number of robots that we can use. We model this as a combinatorial problem and show that it is equivalent to finding the maximum number of disjoint kk-cycles in the de Bruijn graph dB(q,ℓ)\text{dB}(q,\ell). We provide several existence results that give the maximum number of cycles in dB(q,ℓ)\text{dB}(q,\ell) in various cases. For example, we give an optimal solution when k=qℓ−1k=q^{\ell-1}. Another construction yields many cycles in larger de Bruijn graphs using cycles from smaller de Bruijn graphs: if dB(q,ℓ)\text{dB}(q,\ell) can be partitioned into kk-cycles, then dB(q,ℓ)\text{dB}(q,\ell) can be partitioned into tktk-cycles for any divisor tt of kk. The methods used are based on finite field algebra and the combinatorics of words.Comment: 16 pages, 4 figures. Accepted for publication in Discrete Applied Mathematic

    A formula for the number of tilings of an octagon by rhombi

    Get PDF
    We propose the first algebraic determinantal formula to enumerate tilings of a centro-symmetric octagon of any size by rhombi. This result uses the Gessel-Viennot technique and generalizes to any octagon a formula given by Elnitsky in a special case.Comment: New title. Minor improvements. To appear in Theoretical Computer Science, special issue on "Combinatorics of the Discrete Plane and Tilings

    On Binary de Bruijn Sequences from LFSRs with Arbitrary Characteristic Polynomials

    Full text link
    We propose a construction of de Bruijn sequences by the cycle joining method from linear feedback shift registers (LFSRs) with arbitrary characteristic polynomial f(x)f(x). We study in detail the cycle structure of the set Ω(f(x))\Omega(f(x)) that contains all sequences produced by a specific LFSR on distinct inputs and provide a fast way to find a state of each cycle. This leads to an efficient algorithm to find all conjugate pairs between any two cycles, yielding the adjacency graph. The approach is practical to generate a large class of de Bruijn sequences up to order n≈20n \approx 20. Many previously proposed constructions of de Bruijn sequences are shown to be special cases of our construction
    • 

    corecore