47 research outputs found

    Topologies Refining the Cantor Topology on X ω

    Full text link
    International audienceThe space of one-sided infinite words plays a crucial rôle in several parts of Theoretical Computer Science. Usually, it is convenient to regard this space as a metric space, the Cantor-space. It turned out that for several purposes topologies other than the one of the Cantor-space are useful, e.g. for studying fragments of first-order logic over infinite words or for a topological characterisation of random infinite words. It is shown that both of these topologies refine the topology of the Cantor-space. Moreover, from common features of these topologies we extract properties which characterise a large class of topologies. It turns out that, for this general class of topologies, the corresponding closure and interior operators respect the shift operations and also, to some respect, the definability of sets of infinite words by finite automata

    Generic Stationary Measures and Actions

    Full text link
    Let GG be a countably infinite group, and let μ\mu be a generating probability measure on GG. We study the space of μ\mu-stationary Borel probability measures on a topological GG space, and in particular on ZGZ^G, where ZZ is any perfect Polish space. We also study the space of μ\mu-stationary, measurable GG-actions on a standard, nonatomic probability space. Equip the space of stationary measures with the weak* topology. When μ\mu has finite entropy, we show that a generic measure is an essentially free extension of the Poisson boundary of (G,μ)(G,\mu). When ZZ is compact, this implies that the simplex of μ\mu-stationary measures on ZGZ^G is a Poulsen simplex. We show that this is also the case for the simplex of stationary measures on {0,1}G\{0,1\}^G. We furthermore show that if the action of GG on its Poisson boundary is essentially free then a generic measure is isomorphic to the Poisson boundary. Next, we consider the space of stationary actions, equipped with a standard topology known as the weak topology. Here we show that when GG has property (T), the ergodic actions are meager. We also construct a group GG without property (T) such that the ergodic actions are not dense, for some μ\mu. Finally, for a weaker topology on the set of actions, which we call the very weak topology, we show that a dynamical property (e.g., ergodicity) is topologically generic if and only if it is generic in the space of measures. There we also show a Glasner-King type 0-1 law stating that every dynamical property is either meager or residual.Comment: To appear in the Transactions of the AMS, 49 page

    Polishness of some topologies related to word or tree automata

    Full text link
    We prove that the B\"uchi topology and the automatic topology are Polish. We also show that this cannot be fully extended to the case of a space of infinite labelled binary trees; in particular the B\"uchi and the Muller topologies are not Polish in this case.Comment: This paper is an extended version of a paper which appeared in the proceedings of the 26th EACSL Annual Conference on Computer Science and Logic, CSL 2017. The main addition with regard to the conference paper consists in the study of the B\"uchi topology and of the Muller topology in the case of a space of trees, which now forms Section

    Generic Stationary Measures and Actions

    Get PDF
    Let G be a countably infinite group, and let μ be a generating probability measure on G. We study the space of μ-stationary Borel probability measures on a topological G space, and in particular on Z^G, where Z is any perfect Polish space. We also study the space of μ-stationary, measurable G-actions on a standard, nonatomic probability space. Equip the space of stationary measures with the weak* topology. When μ has finite entropy, we show that a generic measure is an essentially free extension of the Poisson boundary of (G, μ). When Z is compact, this implies that the simplex of μ-stationary measures on Z^G is a Poulsen simplex. We show that this is also the case for the simplex of stationary measures on {0, 1}^G. We furthermore show that if the action of G on its Poisson boundary is essentially free then a generic measure is isomorphic to the Poisson boundary. Next, we consider the space of stationary actions, equipped with a standard topology known as the weak topology. Here we show that when G has property (T), the ergodic actions are meager. We also construct a group G without property (T) such that the ergodic actions are not dense, for some μ. Finally, for a weaker topology on the set of actions, which we call the very weak topology, we show that a dynamical property (e.g., ergodicity) is topologically generic if and only if it is generic in the space of measures. There we also show a Glasner-King type 0-1 law stating that every dynamical property is either meager or residual

    On subgroups of minimal topological groups

    Get PDF
    A topological group is minimal if it does not admit a strictly coarser Hausdorff group topology. The Roelcke uniformity (or lower uniformity) on a topological group is the greatest lower bound of the left and right uniformities. A group is Roelcke-precompact if it is precompact with respect to the Roelcke uniformity. Many naturally arising non-Abelian topological groups are Roelcke-precompact and hence have a natural compactification. We use such compactifications to prove that some groups of isometries are minimal. In particular, if U_1 is the Urysohn universal metric space of diameter 1, the group Iso(U_1) of all self-isometries of U_1 is Roelcke-precompact, topologically simple and minimal. We also show that every topological group is a subgroup of a minimal topologically simple Roelcke-precompact group of the form Iso(M), where M is an appropriate non-separable version of the Urysohn space.Comment: To appear in Topology and its Applications. 39 page
    corecore