84 research outputs found

    How many nn-vertex triangulations does the 33-sphere have?

    Full text link
    It is known that the 33-sphere has at most 2O(n2logn)2^{O(n^2 \log n)} combinatorially distinct triangulations with nn vertices. Here we construct at least 2Ω(n2)2^{\Omega(n^2)} such triangulations.Comment: 9 pages, 1 figur

    Combinatorial 3-manifolds with 10 vertices

    Full text link
    We give a complete enumeration of all combinatorial 3-manifolds with 10 vertices: There are precisely 247882 triangulated 3-spheres with 10 vertices as well as 518 vertex-minimal triangulations of the sphere product S2×S1S^2\times S^1 and 615 triangulations of the twisted sphere product S^2_\times_S^1. All the 3-spheres with up to 10 vertices are shellable, but there are 29 vertex-minimal non-shellable 3-balls with 9 vertices.Comment: 9 pages, minor revisions, to appear in Beitr. Algebra Geo

    Small examples of non-constructible simplicial balls and spheres

    Full text link
    We construct non-constructible simplicial dd-spheres with d+10d+10 vertices and non-constructible, non-realizable simplicial dd-balls with d+9d+9 vertices for d3d\geq 3.Comment: 9 pages, 3 figure

    Almost simplicial polytopes: the lower and upper bound theorems

    Get PDF
    International audiencethis is an extended abstract of the full version. We study n-vertex d-dimensional polytopes with at most one nonsimplex facet with, say, d + s vertices, called almost simplicial polytopes. We provide tight lower and upper bounds for the face numbers of these polytopes as functions of d, n and s, thus generalizing the classical Lower Bound Theorem by Barnette and Upper Bound Theorem by McMullen, which treat the case s = 0. We characterize the minimizers and provide examples of maximizers, for any d

    Collapsibility of CAT(0) spaces

    Full text link
    Collapsibility is a combinatorial strengthening of contractibility. We relate this property to metric geometry by proving the collapsibility of any complex that is CAT(0) with a metric for which all vertex stars are convex. This strengthens and generalizes a result by Crowley. Further consequences of our work are: (1) All CAT(0) cube complexes are collapsible. (2) Any triangulated manifold admits a CAT(0) metric if and only if it admits collapsible triangulations. (3) All contractible d-manifolds (d4d \ne 4) admit collapsible CAT(0) triangulations. This discretizes a classical result by Ancel--Guilbault.Comment: 27 pages, 3 figures. The part on collapsibility of convex complexes has been removed and forms a new paper, called "Barycentric subdivisions of convexes complex are collapsible" (arXiv:1709.07930). The part on enumeration of manifolds has also been removed and forms now a third paper, called "A Cheeger-type exponential bound for the number of triangulated manifolds" (arXiv:1710.00130

    On kk-stellated and kk-stacked spheres

    Full text link
    We introduce the class Σk(d)\Sigma_k(d) of kk-stellated (combinatorial) spheres of dimension dd (0kd+10 \leq k \leq d + 1) and compare and contrast it with the class Sk(d){\cal S}_k(d) (0kd0 \leq k \leq d) of kk-stacked homology dd-spheres. We have Σ1(d)=S1(d)\Sigma_1(d) = {\cal S}_1(d), and Σk(d)Sk(d)\Sigma_k(d) \subseteq {\cal S}_k(d) for d2k1d \geq 2k - 1. However, for each k2k \geq 2 there are kk-stacked spheres which are not kk-stellated. The existence of kk-stellated spheres which are not kk-stacked remains an open question. We also consider the class Wk(d){\cal W}_k(d) (and Kk(d){\cal K}_k(d)) of simplicial complexes all whose vertex-links belong to Σk(d1)\Sigma_k(d - 1) (respectively, Sk(d1){\cal S}_k(d - 1)). Thus, Wk(d)Kk(d){\cal W}_k(d) \subseteq {\cal K}_k(d) for d2kd \geq 2k, while W1(d)=K1(d){\cal W}_1(d) = {\cal K}_1(d). Let Kˉk(d)\bar{{\cal K}}_k(d) denote the class of dd-dimensional complexes all whose vertex-links are kk-stacked balls. We show that for d2k+2d\geq 2k + 2, there is a natural bijection MMˉM \mapsto \bar{M} from Kk(d){\cal K}_k(d) onto Kˉk(d+1)\bar{{\cal K}}_k(d + 1) which is the inverse to the boundary map  ⁣:Kˉk(d+1)Kk(d)\partial \colon \bar{{\cal K}}_k(d + 1) \to {\cal K}_k(d).Comment: Revised Version. Theorem 2.24 is new. 18 pages. arXiv admin note: substantial text overlap with arXiv:1102.085

    A non-partitionable Cohen-Macaulay simplicial complex

    Get PDF
    A long-standing conjecture of Stanley states that every Cohen-Macaulay simplicial complex is partitionable. We disprove the conjecture by constructing an explicit counterexample. Due to a result of Herzog, Jahan and Yassemi, our construction also disproves the conjecture that the Stanley depth of a monomial ideal is always at least its depth.Comment: Final version. 13 pages, 2 figure
    corecore