107 research outputs found

    Shellability is NP-Complete

    Get PDF
    We prove that for every d >= 2, deciding if a pure, d-dimensional, simplicial complex is shellable is NP-hard, hence NP-complete. This resolves a question raised, e.g., by Danaraj and Klee in 1978. Our reduction also yields that for every d >= 2 and k >= 0, deciding if a pure, d-dimensional, simplicial complex is k-decomposable is NP-hard. For d >= 3, both problems remain NP-hard when restricted to contractible pure d-dimensional complexes

    Counting Shellings of Complete Bipartite Graphs and Trees

    Full text link
    A shelling of a graph, viewed as an abstract simplicial complex that is pure of dimension 1, is an ordering of its edges such that every edge is adjacent to some other edges appeared previously. In this paper, we focus on complete bipartite graphs and trees. For complete bipartite graphs, we obtain an exact formula for their shelling numbers. And for trees, we propose a simple method to count shellings and bound shelling numbers using vertex degrees and diameter.Comment: 22 pages, 6 figure

    Discrete Morse theory for the collapsibility of supremum sections

    Get PDF
    The Dushnik-Miller dimension of a poset \le is the minimal number dd of linear extensions 1,,d\le_1, \ldots , \le_d of \le such that \le is the intersection of 1,,d\le_1, \ldots , \le_d. Supremum sections are simplicial complexes introduced by Scarf and are linked to the Dushnik-Miller as follows: the inclusion poset of a simplicial complex is of Dushnik-Miller dimension at most dd if and only if it is included in a supremum section coming from a representation of dimension dd. Collapsibility is a topoligical property of simplicial complexes which has been introduced by Whitehead and which resembles to shellability. While Ossona de Mendez proved in that a particular type of supremum sections are shellable, we show in this article that supremum sections are in general collapsible thanks to the discrete Morse theory developped by Forman

    Hyperplane Neural Codes and the Polar Complex

    Full text link
    Hyperplane codes are a class of convex codes that arise as the output of a one layer feed-forward neural network. Here we establish several natural properties of stable hyperplane codes in terms of the {\it polar complex} of the code, a simplicial complex associated to any combinatorial code. We prove that the polar complex of a stable hyperplane code is shellable and show that most currently known properties of the hyperplane codes follow from the shellability of the appropriate polar complex.Comment: 23 pages, 5 figures. To appear in Proceedings of the Abel Symposiu

    Leibniz International Proceedings in Information, LIPIcs

    Get PDF
    We prove that for every d ≥ 2, deciding if a pure, d-dimensional, simplicial complex is shellable is NP-hard, hence NP-complete. This resolves a question raised, e.g., by Danaraj and Klee in 1978. Our reduction also yields that for every d ≥ 2 and k ≥ 0, deciding if a pure, d-dimensional, simplicial complex is k-decomposable is NP-hard. For d ≥ 3, both problems remain NP-hard when restricted to contractible pure d-dimensional complexes
    corecore