3,302 research outputs found

    磁場の制御を用いた磁性流体による変形ロボットシートの研究

    Get PDF
    筑波大学 (University of Tsukuba)201

    複数の静電容量型柔軟触覚デバイスを用いた三軸力センサの開発

    Get PDF
    早大学位記番号:新7325早稲田大

    The shape – morphing performance of magnetoactive soft materials

    Get PDF
    Magnetoactive soft materials (MSMs) are soft polymeric composites filled with magnetic particles that are an emerging class of smart and multifunctional materials with immense potentials to be used in various applications including but not limited to artificial muscles, soft robotics, controlled drug delivery, minimally invasive surgery, and metamaterials. Advantages of MSMs include remote contactless actuation with multiple actuation modes, high actuation strain and strain rate, self-sensing, and fast response etc. Having broad functional behaviours offered by the magnetic fillers embedded within non-magnetic matrices, MSMs are undoubtedly one of the most promising materials in applications where shape-morphing, dynamic locomotion, and reconfigurable structures are highly required. This review article provides a comprehensive picture of the MSMs focusing on the materials, manufacturing processes, programming and actuation techniques, behaviours, experimental characterisations, and device-related achievements with the current state-of-the-art and discusses future perspectives. Overall, this article not only provides a comprehensive overview of MSMs’ research and development but also functions as a systematic guideline towards the development of multifunctional, shape-morphing, and sophisticated magnetoactive devices

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 39)

    Get PDF
    Abstracts are provided for 154 patents and patent applications entered into the NASA scientific and technical information systems during the period Jan. 1991 through Jun. 1991. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application

    Simulation and development of paper-based actuators

    Get PDF
    Soft robots have become an attractive research topic for opening new doors for robots' limitations by being flexible, light, and small and with the ability to have an adaptable shape. An essential component in a soft robot is the soft actuator, which provides the system with a deformable body and allows it to interact with the environment to achieve the desired actuation pattern. Among the various materials used in soft actuators, paper-based actuators have special attention because paper is an abundant, lightweight, and biodegradable material. This work illustrates an insight into the soft actuators field and focuses on developing unique paper-based actuators applying the microwave heat for a liquid-vapor phase transition, in this case, water. This document focuses on the study of different designs, materials, and thick-nesses by changing the paper, elastomer, and double-sided tape.Os robôs flexíveis tornaram-se um tópico de pesquisa atraente por abrirem novas portas para as limitações dos robôs por serem flexíveis, leves e pequenos e com a capacidade de ter uma forma adaptável. Um componente essencial em um robô flexível é o atuador flexível, que fornece ao sistema um corpo deformável e permite que este interaja com o ambiente para atingir o movi-mento desejado. Dos vários materiais usados em atuadores flexíveis, os atuadores baseados em papel têm especial atenção porque o papel é um material abundante, leve e biodegradável. Este trabalho ilustra uma visão da área de atuadores flexíveis e foca no desenvolvimento de atuadores únicos baseados em papel , aplicando o calor de microondas para uma transição de fase líquido-vapor, neste caso, água. Este documento mostra o estudo de diferentes designs, ma-teriais e espessuras, alterando o papel, elastómero e fita dupla-face

    Design and Implementation of Electromagnetic Actuation System to Actuate Micro/NanoRobots in Viscous Environment

    Get PDF
    The navigation of Micro/Nanorobots (MNRs) with the ability to track a selected trajectory accurately holds significant promise for different applications in biomedicine, providing methods for diagnoses and treatments inside the human body. The critical challenge is ensuring that the required power can be generated within the MNR. Furthermore, ensuring that it is feasible for the robot to travel inside the human body with the necessary power availability. Currently, MNRs are widely driven either by exogenous power sources (light energy, magnetic fields, electric fields, acoustics fields, etc.) or by endogenous energy sources, such as chemical interaction energy. Various driving techniques have been established, including piezoelectric as a driving source, thermal driving, electro-osmotic force driven by biological bacteria, and micro-motors powered by chemical fuel. These driving techniques have some restrictions, mainly when used in biomedicine. External magnetic fields are another potential power source of MNRs. Magnetic fields can permeate deep tissues and be safe for human organisms. As a result, magnetic fields’ magnetic forces and moments can be applied to MNRs without affecting biological fluids and tissues. Due to their features and characteristics of magnetic fields in generating high power, they are naturally suited to control the electromagnetically actuated MNRs in inaccessible locations due to their ability to go through tiny spaces. From the literature, it can be inferred from the available range of actuation technologies that magnetic actuation performs better than other technologies in terms of controllability, speed, flexibility of the working environment, and far less harm may cause to people. Also, electromagnetic actuation systems may come in various configurations that offer many degrees of freedom, different working mediums, and controllability schemes. Although this is a promising field of research, further simulation studies, and analysis, new smart materials, and the development and building of new real systems physically, and testing the concepts under development from different aspects and application requirements are required to determine whether these systems could be implemented in natural clinical settings on the human body. Also, to understand the latest development in MNRs and the actuation techniques with the associated technologies. Also, there is a need to conduct studies and comparisons to conclude the main research achievements in the field, highlight the critical challenges waiting for answers, and develop new research directions to solve and improve the performance. Therefore, this thesis aims to model and analyze, simulate, design, develop, and implement (with complete hardware and software integration) an electromagnetic actuation (EMA) system to actuate MNRs in the sixdimensional (6D) motion space inside a relatively large region of interest (ROI). The second stage is a simulation; simulation and finite element analysis were conducted. COMSOL multi-physics software is used to analyze the performance of different coils and coil pairs for Helmholtz and Maxwell coil configurations and electromagnetic actuation systems. This leads to the following.: • Finite element analysis (FEA) demonstrates that the Helmholtz coils generate a uniform and consistent magnetic field within a targeted ROI, and the Maxwell coils generate a uniform magnetic gradient. • The possibility to combine Helmholtz and Maxwell coils in different space dimensions. With the ability to actuate an MNR in a 6D space: 3D as a position and 3D as orientation. • Different electromagnetic system configurations are proposed, and their effectiveness in guiding an MNR inside a mimicked blood vessel environment was assessed. • Three pairs of Helmholtz coils and three pairs of coils of Maxwell coils are combined to actuate different size MNRs inside a mimicked blood vessel environment and in 6D. Based on the modeling results, a magnetic actuation system prototype that can control different sizes MNRs was conceived. A closed-loop control algorithm was proposed, and motion analysis of the MNR was conducted and discussed for both position and orientation. Improved EMA location tracking along a chosen trajectory was achieved using a PID-based closed-loop control approach with the best possible parameters. Through the model and analysis stage, the developed system was simulated and tested using open- and closed-loop circumstances. Finally, the closedloop controlled system was concluded and simulated to verify the ability of the proposed EMA to actuate an MN under different trajectory tracking examples with different dimensionality and for different sizes of MNRs. The last stage is developing the experimental setup by manufacturing the coils and their base in-house. Drivers and power supplies are selected according to the specifications that actuate the coils to generate the required magnetic field. Three digital microscopes were integrated with the electromagnetic actuation system to deliver visual feedback aiming to track in real-time the location of the MNR in the 6D high viscous fluidic environment, which leads to enabling closed-loop control. The closed-loop control algorithm is developed to facilitate MNR trajectory tracking and minimize the error accordingly. Accordingly, different tests were carried out to check the uniformity of the magnetic field generated from the coils. Also, a test was done for the digital microscope to check that it was calibrated and it works correctly. Experimental tests were conducted in 1D, 2D plane, and 3D trajectories with two different MNR sizes. The results show the ability of the proposed EMA system to actuate the two different sizes with a tracking error of 20-45 µm depending on the axis and the size of the MNR. The experiments show the ability of the developed EMA system to hold the MNR at any point within the 3D fluidic environment while overcoming the gravity effects. A comparison was made between the results achieved (in simulation and physical experiments) and the results deduced from the literature. The comparison shows that the thesis’s outcomes regarding the error and MNR size used are significant, with better performance relative to the MNR size and value of the error

    COBE's search for structure in the Big Bang

    Get PDF
    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle

    NASA patent abstracts bibliography: A continuing bibliography. Section 1: Abstracts (supplement 40)

    Get PDF
    Abstracts are provided for 181 patents and patent applications entered into the NASA scientific and technical information system during the period July 1991 through December 1991. Each entry consists of a citation, an abstract, and in most cases, a key illustration selected from the patent or patent application

    Nonterrestrial utilization of materials: Automated space manufacturing facility

    Get PDF
    Four areas related to the nonterrestrial use of materials are included: (1) material resources needed for feedstock in an orbital manufacturing facility, (2) required initial components of a nonterrestrial manufacturing facility, (3) growth and productive capability of such a facility, and (4) automation and robotics requirements of the facility

    Micro/nanoscale magnetic robots for biomedical applications

    Get PDF
    Magnetic small-scale robots are devices of great potential for the biomedical field because of the several benefits of this method of actuation. Recent work on the development of these devices has seen tremendous innovation and refinement toward ​improved performance for potential clinical applications. This review briefly details recent advancements in small-scale robots used for biomedical applications, covering their design, fabrication, applications, and demonstration of ability, and identifies the gap in studies and the difficulties that have persisted in the optimization of the use of these devices. In addition, alternative biomedical applications are also suggested for some of the technologies that show potential for other functions. This study concludes that although the field of small-scale robot research is highly innovative ​there is need for more concerted efforts to improve functionality and reliability of these devices particularly in clinical applications. Finally, further suggestions are made toward ​the achievement of commercialization for these devices
    corecore