5 research outputs found

    Super-resolution in brain Diffusion Weighted Imaging (DWI)

    Get PDF
    Abstract. Diffusion Weighted (DW) imaging has proven to be useful at analysing brain architecture as well as at establishing brain tract organization and neuronal connectivity. However, an actual clinical use of DW images is currently limited by a series of acquisition artifacts, among them the partial volume effect (PVE) that may completely alter the spatial resolution and therefore the visualization of microanatomical details. In this work, a new superresolution method will be presented, taking advantage of the redundant structural patterns that shape the brain. The proposed method couples low-high resolution information and explores different directional spaces that might exploit the spectral content of the DW images. A comparison of this proposal with a classical image interpolation method demostrates an improvement of about 3 dB when using the typical PSNR.Las im谩genes de Difusi贸n Ponderada (DWI por sus siglas en ingl茅s) han probado ser de gran utilidad en proceso de an谩lisis de la arquitectura del cerebro y en investigaciones acerca de la organizaci贸n de tractos y la conectividad neuronal. Sin embargo, el uso cl铆nico de la im谩genes DW est谩 limitado actualmente por algunos artefactos propios de la adquisici贸n, tales como el efecto de volumen parcial (PVE), que afecta la resoluci贸n espacial y por ende la visualizaci贸n de detalles microanat贸micos. En este trabajo de tesis se presenta un nuevo m茅todo de super-resoluci贸n que aprovecha lo redundante de los patrones estructurales que dan forma al cerebro el cerebro. El m茅todo propuesto acopla informaci贸n de alta /baja resoluci贸n y explora diferentes espacios de representaci贸n para las caracter铆sticas direccionales y el contenido espectral de las DWI. Una comparaci贸n con m茅todos cl谩sicos de interpolaci贸n demuestra una mejora de cerca de 3dB usando como m茅trica el PSNR.Maestr铆

    Super resoluci贸n (SR) en im谩genes de resonancia magn茅tica DWI de cerebro usando estimaci贸n bayesiana

    Get PDF
    En la presente tesis, se propone un m茅todo bayesiano de S煤per resoluci贸n (SR) que obtiene im谩genes de alta resoluci贸n (HR) DWI a partir de im谩genes degradadas de baja resoluci贸n (LR), tratando de recuperar un m谩ximo de la informaci贸n en alta frecuencia. Bajo la formuaci贸n bayesiana, la imagen desconocida de alta resoluci贸n (HR), el proceso de adquisici贸n y los par谩metros del modelo son modelados como procesos estoc谩sticos. El t茅rmino de verosimilitud es modelado usando una distribuci贸n gausiana para estimar el error entre la representaci贸n y las observaciones. El t茅rmino a priori se modela como una distribuci贸n gausiana multivariada en el que los pesos del vecindario corresponden a variables intermedias que se introducen con dos prop贸sitos: modelar las relaciones locales con una distribuci贸n Laplaciana y utilizar la informaci贸n m谩s relevante de su vecindario. En consecuencia, la matriz de covarianza de los pesos de este prior se aproxima por variables latentes que se calculan de las relaciones locales modeladas con una Laplaciana. Los resultados experimentales muestran que el m茅todo supera la l铆nea base por 2.56 dB usando como m茅trica el PSNR para una colecci贸n de 35 casos.Abstract: In this thesis, a Bayesian super resolution (SR) method obtains high resolution (HR) brain Diffusion-Weighted Magnetic Resonance Imaging (DMRI) images from degraded low resolution (LR) images. Under a Bayesian formulation, the unknown HR image, the acquisition process and the unknown parameters are modeled as stochastic processes. The likelihood model is modeled using a Gaussian distribution to estimate the error between the representation and the observations. The prior is introduced as a Multivariate Gaussian Distribution, for which the inverse of the covariance matrix is approximated by Laplacian-like functions that model the local relationships, capturing thereby non-homogeneous relationships between neighbor intensities. Experimental results show the method outperforms the base line by 2.56 dB when using PSNR as a metric of quality in a set of 35 cases.Maestr铆

    Machine Learning and Deep Learning Approaches for Brain Disease Diagnosis : Principles and Recent Advances

    Get PDF
    This work was supported in part by the National Research Foundation of Korea-Grant funded by the Korean Government (Ministry of Science and ICT) under Grant NRF 2020R1A2B5B02002478, and in part by Sejong University through its Faculty Research Program under Grant 20212023.Peer reviewedPublisher PD

    Imaging Sensors and Applications

    Get PDF
    In past decades, various sensor technologies have been used in all areas of our lives, thus improving our quality of life. In particular, imaging sensors have been widely applied in the development of various imaging approaches such as optical imaging, ultrasound imaging, X-ray imaging, and nuclear imaging, and contributed to achieve high sensitivity, miniaturization, and real-time imaging. These advanced image sensing technologies play an important role not only in the medical field but also in the industrial field. This Special Issue covers broad topics on imaging sensors and applications. The scope range of imaging sensors can be extended to novel imaging sensors and diverse imaging systems, including hardware and software advancements. Additionally, biomedical and nondestructive sensing applications are welcome
    corecore