15 research outputs found

    Spherical Gaussian Leftover Hash Lemma via the Rényi Divergence

    Get PDF
    Agrawal et al. (Asiacrypt 2013) proved the discrete Gaussian leftover hash lemma, which states that the linear transformation of the discrete spherical Gaussian is statistically close to the discrete ellipsoid Gaussian. Showing that it is statistically close to the discrete spherical Gaussian, which we call the discrete spherical Gaussian leftover hash lemma (SGLHL), is an open problem posed by Agrawal et al. In this paper, we solve the problem in a weak sense: we show that the distribution of the linear transformation of the discrete spherical Gaussian and the discrete spherical Gaussian are close with respect to the Rényi divergence (RD), which we call the weak SGLHL (wSGLHL). As an application of wSGLHL, we construct a sharper self-reduction of the learning with errors problem (LWE) problem. Applebaum et al. (CRYPTO 2009) showed that linear sums of LWE samples are statistically close to (plain) LWE samples with some unknown error parameter. In contrast, we show that linear sums of LWE samples and (plain) LWE samples with a known error parameter are close with respect to RD. As another application, we weaken the independence heuristic required for the fully homomorphic encryption scheme TFHE

    Polar sampler: a novel Bernoulli sampler using polar codes with application to integer Gaussian sampling

    Get PDF
    Cryptographic constructions based on hard lattice problems have emerged as a front runner for the standardization of post-quantum public-key cryptography. As the standardization process takes place, optimizing specific parts of proposed schemes, e.g., Bernoulli sampling and integer Gaussian sampling, becomes a worthwhile endeavor. In this work, we propose a novel Bernoulli sampler based on polar codes, dubbed “polar sampler”. The polar sampler is information theoretically optimum in the sense that the number of uniformly random bits it consumes approaches the entropy bound asymptotically. It also features quasi-linear complexity and constant-time implementation. An integer Gaussian sampler is developed using multilevel polar samplers. Our algorithm becomes effective when sufficiently many samples are required at each query to the sampler. Security analysis is given based on Kullback–Leibler divergence and Rényi divergence. Experimental and asymptotic comparisons between our integer Gaussian sampler and state-of-the-art samplers verify its efficiency in terms of entropy consumption, running time and memory cost. We envisage that the proposed Bernoulli sampler can find other applications in cryptography in addition to Gaussian sampling

    Sécurité étendue de la cryptographie fondée sur les réseaux euclidiens

    Get PDF
    Lattice-based cryptography is considered as a quantum-safe alternative for the replacement of currently deployed schemes based on RSA and discrete logarithm on prime fields or elliptic curves. It offers strong theoretical security guarantees, a large array of achievable primitives, and a competitive level of efficiency. Nowadays, in the context of the NIST post-quantum standardization process, future standards may ultimately be chosen and several new lattice-based schemes are high-profile candidates. The cryptographic research has been encouraged to analyze lattice-based cryptosystems, with a particular focus on practical aspects. This thesis is rooted in this effort.In addition to black-box cryptanalysis with classical computing resources, we investigate the extended security of these new lattice-based cryptosystems, employing a broad spectrum of attack models, e.g. quantum, misuse, timing or physical attacks. Accounting that these models have already been applied to a large variety of pre-quantum asymmetric and symmetric schemes before, we concentrate our efforts on leveraging and addressing the new features introduced by lattice structures. Our contribution is twofold: defensive, i.e. countermeasures for implementations of lattice-based schemes and offensive, i.e. cryptanalysis.On the defensive side, in view of the numerous recent timing and physical attacks, we wear our designer’s hat and investigate algorithmic protections. We introduce some new algorithmic and mathematical tools to construct provable algorithmic countermeasures in order to systematically prevent all timing and physical attacks. We thus participate in the actual provable protection of the GLP, BLISS, qTesla and Falcon lattice-based signatures schemes.On the offensive side, we estimate the applicability and complexity of novel attacks leveraging the lack of perfect correctness introduced in certain lattice-based encryption schemes to improve their performance. We show that such a compromise may enable decryption failures attacks in a misuse or quantum model. We finally introduce an algorithmic cryptanalysis tool that assesses the security of the mathematical problem underlying lattice-based schemes when partial knowledge of the secret is available. The usefulness of this new framework is demonstrated with the improvement and automation of several known classical, decryption-failure, and side-channel attacks.La cryptographie fondée sur les réseaux euclidiens représente une alternative prometteuse à la cryptographie asymétrique utilisée actuellement, en raison de sa résistance présumée à un ordinateur quantique universel. Cette nouvelle famille de schémas asymétriques dispose de plusieurs atouts parmi lesquels de fortes garanties théoriques de sécurité, un large choix de primitives et, pour certains de ses représentants, des performances comparables aux standards actuels. Une campagne de standardisation post-quantique organisée par le NIST est en cours et plusieurs schémas utilisant des réseaux euclidiens font partie des favoris. La communauté scientifique a été encouragée à les analyser car ils pourraient à l’avenir être implantés dans tous nos systèmes. L’objectif de cette thèse est de contribuer à cet effort.Nous étudions la sécurité de ces nouveaux cryptosystèmes non seulement au sens de leur résistance à la cryptanalyse en “boîte noire” à l’aide de moyens de calcul classiques, mais aussi selon un spectre plus large de modèles de sécurité, comme les attaques quantiques, les attaques supposant des failles d’utilisation, ou encore les attaques par canaux auxiliaires. Ces différents types d’attaques ont déjà été largement formalisés et étudiés par le passé pour des schémas asymétriques et symétriques pré-quantiques. Dans ce mémoire, nous analysons leur application aux nouvelles structures induites par les réseaux euclidiens. Notre travail est divisé en deux parties complémentaires : les contremesures et les attaques.La première partie regroupe nos contributions à l’effort actuel de conception de nouvelles protections algorithmiques afin de répondre aux nombreuses publications récentes d’attaques par canaux auxiliaires. Les travaux réalisés en équipe auxquels nous avons pris part on abouti à l’introduction de nouveaux outils mathématiques pour construire des contre-mesures algorithmiques, appuyées sur des preuves formelles, qui permettent de prévenir systématiquement les attaques physiques et par analyse de temps d’exécution. Nous avons ainsi participé à la protection de plusieurs schémas de signature fondés sur les réseaux euclidiens comme GLP, BLISS, qTesla ou encore Falcon.Dans une seconde partie consacrée à la cryptanalyse, nous étudions dans un premier temps de nouvelles attaques qui tirent parti du fait que certains schémas de chiffrement à clé publique ou d’établissement de clé peuvent échouer avec une faible probabilité. Ces échecs sont effectivement faiblement corrélés au secret. Notre travail a permis d’exhiber des attaques dites « par échec de déchiffrement » dans des modèles de failles d’utilisation ou des modèles quantiques. Nous avons d’autre part introduit un outil algorithmique de cryptanalyse permettant d’estimer la sécurité du problème mathématique sous-jacent lorsqu’une information partielle sur le secret est donnée. Cet outil s’est avéré utile pour automatiser et améliorer plusieurs attaques connues comme des attaques par échec de déchiffrement, des attaques classiques ou encore des attaques par canaux auxiliaires
    corecore