30 research outputs found

    Input Sparsity and Hardness for Robust Subspace Approximation

    Full text link
    In the subspace approximation problem, we seek a k-dimensional subspace F of R^d that minimizes the sum of p-th powers of Euclidean distances to a given set of n points a_1, ..., a_n in R^d, for p >= 1. More generally than minimizing sum_i dist(a_i,F)^p,we may wish to minimize sum_i M(dist(a_i,F)) for some loss function M(), for example, M-Estimators, which include the Huber and Tukey loss functions. Such subspaces provide alternatives to the singular value decomposition (SVD), which is the p=2 case, finding such an F that minimizes the sum of squares of distances. For p in [1,2), and for typical M-Estimators, the minimizing FF gives a solution that is more robust to outliers than that provided by the SVD. We give several algorithmic and hardness results for these robust subspace approximation problems. We think of the n points as forming an n x d matrix A, and letting nnz(A) denote the number of non-zero entries of A. Our results hold for p in [1,2). We use poly(n) to denote n^{O(1)} as n -> infty. We obtain: (1) For minimizing sum_i dist(a_i,F)^p, we give an algorithm running in O(nnz(A) + (n+d)poly(k/eps) + exp(poly(k/eps))), (2) we show that the problem of minimizing sum_i dist(a_i, F)^p is NP-hard, even to output a (1+1/poly(d))-approximation, answering a question of Kannan and Vempala, and complementing prior results which held for p >2, (3) For loss functions for a wide class of M-Estimators, we give a problem-size reduction: for a parameter K=(log n)^{O(log k)}, our reduction takes O(nnz(A) log n + (n+d) poly(K/eps)) time to reduce the problem to a constrained version involving matrices whose dimensions are poly(K eps^{-1} log n). We also give bicriteria solutions, (4) Our techniques lead to the first O(nnz(A) + poly(d/eps)) time algorithms for (1+eps)-approximate regression for a wide class of convex M-Estimators.Comment: paper appeared in FOCS, 201

    Sharpened Lazy Incremental Quasi-Newton Method

    Full text link
    We consider the finite sum minimization of nn strongly convex and smooth functions with Lipschitz continuous Hessians in dd dimensions. In many applications where such problems arise, including maximum likelihood estimation, empirical risk minimization, and unsupervised learning, the number of observations nn is large, and it becomes necessary to use incremental or stochastic algorithms whose per-iteration complexity is independent of nn. Of these, the incremental/stochastic variants of the Newton method exhibit superlinear convergence, but incur a per-iteration complexity of O(d3)O(d^3), which may be prohibitive in large-scale settings. On the other hand, the incremental Quasi-Newton method incurs a per-iteration complexity of O(d2)O(d^2) but its superlinear convergence rate has only been characterized asymptotically. This work puts forth the Sharpened Lazy Incremental Quasi-Newton (SLIQN) method that achieves the best of both worlds: an explicit superlinear convergence rate with a per-iteration complexity of O(d2)O(d^2). Building upon the recently proposed Sharpened Quasi-Newton method, the proposed incremental variant incorporates a hybrid update strategy incorporating both classic and greedy BFGS updates. The proposed lazy update rule distributes the computational complexity between the iterations, so as to enable a per-iteration complexity of O(d2)O(d^2). Numerical tests demonstrate the superiority of SLIQN over all other incremental and stochastic Quasi-Newton variants.Comment: 39 pages, 3 figure
    corecore