271 research outputs found

    Sharp Interface Limits of the Cahn-Hilliard Equation with Degenerate Mobility

    Full text link
    In this work, the sharp interface limit of the degenerate Cahn-Hilliard equation (in two space dimensions) with a polynomial double well free energy and a quadratic mobility is derived via a matched asymptotic analysis involving exponentially large and small terms and multiple inner layers. In contrast to some results found in the literature, our analysis reveals that the interface motion is driven by a combination of surface diffusion flux proportional to the surface Laplacian of the interface curvature and an additional contribution from nonlinear, porous-medium type bulk diffusion, For higher degenerate mobilities, bulk diffusion is subdominant. The sharp interface models are corroborated by comparing relaxation rates of perturbations to a radially symmetric stationary state with those obtained by the phase field model.Comment: 27 pages, 2 figure

    On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility

    Get PDF
    We prove existence of weak solutions for a diffuse interface model for the flow of two viscous incompressible Newtonian fluids in a bounded domain by allowing for a degenerate mobility. The model has been developed by Abels, Garcke and Grün for fluids with different densities and leads to a solenoidal velocity field. It is given by a nonhomogeneous Navier-Stokes system with a modifed convective term coupled to a Cahn-Hilliard system, such that an energy estimate is fulfilled which follows from the fact that the model is thermodynamically consistent

    Long-time behavior of a nonlocal Cahn-Hilliard equation with reaction

    Full text link
    In this paper we study the long-time behavior of a nonlocal Cahn-Hilliard system with singular potential, degenerate mobility, and a reaction term. In particular, we prove the existence of a global attractor with finite fractal dimension, the existence of an exponential attractor, and convergence to equilibria for two physically relevant classes of reaction terms

    A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation

    Full text link
    We propose a novel second order in time numerical scheme for Cahn-Hilliard-Navier- Stokes phase field model with matched density. The scheme is based on second order convex-splitting for the Cahn-Hilliard equation and pressure-projection for the Navier-Stokes equation. We show that the scheme is mass-conservative, satisfies a modified energy law and is therefore unconditionally stable. Moreover, we prove that the scheme is uncondition- ally uniquely solvable at each time step by exploring the monotonicity associated with the scheme. Thanks to the weak coupling of the scheme, we design an efficient Picard iteration procedure to further decouple the computation of Cahn-Hilliard equation and Navier-Stokes equation. We implement the scheme by the mixed finite element method. Ample numerical experiments are performed to validate the accuracy and efficiency of the numerical scheme

    On the stable discretization of strongly anisotropic phase field models with applications to crystal growth

    Get PDF
    We introduce unconditionally stable finite element approximations for anisotropic Allen--Cahn and Cahn--Hilliard equations. These equations frequently feature in phase field models that appear in materials science. On introducing the novel fully practical finite element approximations we prove their stability and demonstrate their applicability with some numerical results. We dedicate this article to the memory of our colleague and friend Christof Eck (1968--2011) in recognition of his fundamental contributions to phase field models.Comment: 20 pages, 8 figure

    Sharp-interface limits of Cahn--Hilliard models and mechanics with moving contact lines

    Get PDF
    We construct gradient structures for free boundary problems with moving capillary interfaces with nonlinear (hyper)elasticity and study the impact of moving contact lines. In this context, we numerically analyze how phase-field models converge to certain sharp-interface models when the interface thickness tends to zero. In particular, we study the scaling of the Cahn--Hilliard mobility with certain powers of the interfacial thickness. In the presence of interfaces, it is known that the intended sharp-interface limit holds only for a particular range of powers However, in the presence of moving contact lines we show that some scalings that are valid for interfaces produce significant errors and the effective range of valid powers of the interfacial thickness in the mobility reduces

    Thermodynamically Consistent Diffuse Interface Models for Incompressible Two-Phase Flows with Different Densities

    Get PDF
    A new diffuse interface model for a two-phase flow of two incompressible fluids with different densities is introduced using methods from rational continuum mechanics. The model fulfills local and global dissipation inequalities and is also generalized to situations with a soluble species. Using the method of matched asymptotic expansions we derive various sharp interface models in the limit when the interfacial thickness tends to zero. Depending on the scaling of the mobility in the diffusion equation we either derive classical sharp interface models or models where bulk or surface diffusion is possible in the limit. In the two latter cases the classical Gibbs-Thomson equation has to be modified to include kinetic terms. Finally, we show that all sharp interface models fulfill natural energy inequalities.Comment: 34 page
    • …
    corecore