43 research outputs found

    Between 2- and 3-colorability

    Full text link
    We consider the question of the existence of homomorphisms between Gn,pG_{n,p} and odd cycles when p=c/n,1<c4p=c/n,\,1<c\leq 4. We show that for any positive integer \ell, there exists ϵ=ϵ()\epsilon=\epsilon(\ell) such that if c=1+ϵc=1+\epsilon then w.h.p. Gn,pG_{n,p} has a homomorphism from Gn,pG_{n,p} to C2+1C_{2\ell+1} so long as its odd-girth is at least 2+12\ell+1. On the other hand, we show that if c=4c=4 then w.h.p. there is no homomorphism from Gn,pG_{n,p} to C5C_5. Note that in our range of interest, χ(Gn,p)=3\chi(G_{n,p})=3 w.h.p., implying that there is a homomorphism from Gn,pG_{n,p} to C3C_3

    Combinatorics

    Get PDF
    Combinatorics is a fundamental mathematical discipline that focuses on the study of discrete objects and their properties. The present workshop featured research in such diverse areas as Extremal, Probabilistic and Algebraic Combinatorics, Graph Theory, Discrete Geometry, Combinatorial Optimization, Theory of Computation and Statistical Mechanics. It provided current accounts of exciting developments and challenges in these fields and a stimulating venue for a variety of fruitful interactions. This is a report on the meeting, containing extended abstracts of the presentations and a summary of the problem session

    35th Symposium on Theoretical Aspects of Computer Science: STACS 2018, February 28-March 3, 2018, Caen, France

    Get PDF

    The Nature and Implementation of Representation in Biological Systems

    Get PDF
    I defend a theory of mental representation that satisfies naturalistic constraints. Briefly, we begin by distinguishing (i) what makes something a representation from (ii) given that a thing is a representation, what determines what it represents. Representations are states of biological organisms, so we should expect a unified theoretical framework for explaining both what it is to be a representation as well as what it is to be a heart or a kidney. I follow Millikan in explaining (i) in terms of teleofunction, explicated in terms of natural selection. To explain (ii), we begin by recognizing that representational states do not have content, that is, they are neither true nor false except insofar as they both “point to” or “refer” to something, as well as “say” something regarding whatever it is they are about. To distinguish veridical from false representations, there must be a way for these separate aspects to come apart; hence, we explain (ii) by providing independent theories of what I call f-reference and f-predication (the ‘f’ simply connotes ‘fundamental’, to distinguish these things from their natural language counterparts). Causal theories of representation typically founder on error, or on what Fodor has called the disjunction problem. Resemblance or isomorphism theories typically founder on what I’ve called the non-uniqueness problem, which is that isomorphisms and resemblance are practically unconstrained and so representational content cannot be uniquely determined. These traditional problems provide the motivation for my theory, the structural preservation theory, as follows. F-reference, like reference, is a specific, asymmetric relation, as is causation. F-predication, like predication, is a non-specific relation, as predicates typically apply to many things, just as many relational systems can be isomorphic to any given relational system. Putting these observations together, a promising strategy is to explain f-reference via causal history and f-predication via something like isomorphism between relational systems. This dissertation should be conceptualized as having three parts. After motivating and characterizing the problem in chapter 1, the first part is the negative project, where I review and critique Dretske’s, Fodor’s, and Millikan’s theories in chapters 2-4. Second, I construct my theory about the nature of representation in chapter 5 and defend it from objections in chapter 6. In chapters 7-8, which constitute the third and final part, I address the question of how representation is implemented in biological systems. In chapter 7 I argue that single-cell intracortical recordings taken from awake Macaque monkeys performing a cognitive task provide empirical evidence for structural preservation theory, and in chapter 8 I use the empirical results to illustrate, clarify, and refine the theory
    corecore