5,005 research outputs found

    Transitions in spatial networks

    Get PDF
    Networks embedded in space can display all sorts of transitions when their structure is modified. The nature of these transitions (and in some cases crossovers) can differ from the usual appearance of a giant component as observed for the Erdos-Renyi graph, and spatial networks display a large variety of behaviors. We will discuss here some (mostly recent) results about topological transitions, `localization' transitions seen in the shortest paths pattern, and also about the effect of congestion and fluctuations on the structure of optimal networks. The importance of spatial networks in real-world applications makes these transitions very relevant and this review is meant as a step towards a deeper understanding of the effect of space on network structures.Comment: Corrected version and updated list of reference

    The threshold for combs in random graphs

    Full text link
    For knk\mid n let Combn,kComb_{n,k} denote the tree consisting of an (n/k)(n/k)-vertex path with disjoint kk-vertex paths beginning at each of its vertices. An old conjecture says that for any k=k(n)k=k(n) the threshold for the random graph G(n,p)G(n,p) to contain Combn,kComb_{n,k} is at plognnp\asymp \frac{\log n}n. Here we verify this for kClognk \leq C\log n with any fixed C>0C>0. In a companion paper, using very different methods, we treat the complementary range, proving the conjecture for kκ0lognk\geq \kappa_0 \log n (with κ04.82\kappa_0\approx 4.82).Comment: 9 page

    Pseudo-random graphs

    Full text link
    Random graphs have proven to be one of the most important and fruitful concepts in modern Combinatorics and Theoretical Computer Science. Besides being a fascinating study subject for their own sake, they serve as essential instruments in proving an enormous number of combinatorial statements, making their role quite hard to overestimate. Their tremendous success serves as a natural motivation for the following very general and deep informal questions: what are the essential properties of random graphs? How can one tell when a given graph behaves like a random graph? How to create deterministically graphs that look random-like? This leads us to a concept of pseudo-random graphs and the aim of this survey is to provide a systematic treatment of this concept.Comment: 50 page

    Sharp threshold for embedding combs and other spanning trees in random graphs

    Full text link
    When knk|n, the tree Combn,k\mathrm{Comb}_{n,k} consists of a path containing n/kn/k vertices, each of whose vertices has a disjoint path length k1k-1 beginning at it. We show that, for any k=k(n)k=k(n) and ϵ>0\epsilon>0, the binomial random graph G(n,(1+ϵ)logn/n)\mathcal{G}(n,(1+\epsilon)\log n/ n) almost surely contains Combn,k\mathrm{Comb}_{n,k} as a subgraph. This improves a recent result of Kahn, Lubetzky and Wormald. We prove a similar statement for a more general class of trees containing both these combs and all bounded degree spanning trees which have at least ϵn/log9n\epsilon n/ \log^9n disjoint bare paths length log9n\lceil\log^9 n\rceil. We also give an efficient method for finding large expander subgraphs in a binomial random graph. This allows us to improve a result on almost spanning trees by Balogh, Csaba, Pei and Samotij.Comment: 20 page

    Combinatorial theorems relative to a random set

    Get PDF
    We describe recent advances in the study of random analogues of combinatorial theorems.Comment: 26 pages. Submitted to Proceedings of the ICM 201

    Cycle factors and renewal theory

    Full text link
    For which values of kk does a uniformly chosen 33-regular graph GG on nn vertices typically contain n/k n/k vertex-disjoint kk-cycles (a kk-cycle factor)? To date, this has been answered for k=nk=n and for klognk \ll \log n; the former, the Hamiltonicity problem, was finally answered in the affirmative by Robinson and Wormald in 1992, while the answer in the latter case is negative since with high probability most vertices do not lie on kk-cycles. Here we settle the problem completely: the threshold for a kk-cycle factor in GG as above is κ0log2n\kappa_0 \log_2 n with κ0=[112log23]14.82\kappa_0=[1-\frac12\log_2 3]^{-1}\approx 4.82. Precisely, we prove a 2-point concentration result: if kκ0log2(2n/e)k \geq \kappa_0 \log_2(2n/e) divides nn then GG contains a kk-cycle factor w.h.p., whereas if k<κ0log2(2n/e)log2nnk<\kappa_0\log_2(2n/e)-\frac{\log^2 n}n then w.h.p. it does not. As a byproduct, we confirm the "Comb Conjecture," an old problem concerning the embedding of certain spanning trees in the random graph G(n,p)G(n,p). The proof follows the small subgraph conditioning framework, but the associated second moment analysis here is far more delicate than in any earlier use of this method and involves several novel features, among them a sharp estimate for tail probabilities in renewal processes without replacement which may be of independent interest.Comment: 45 page
    corecore