11,478 research outputs found

    Sharp lower bounds for the asymptotic entropy of symmetric random walks

    Full text link
    The entropy, the spectral radius and the drift are important numerical quantities associated to random walks on countable groups. We prove sharp inequalities relating those quantities for walks with a finite second moment, improving upon previous results of Avez, Varopoulos, Carne, Ledrappier. We also deduce inequalities between these quantities and the volume growth of the group. Finally, we show that the equality case in our inequality is rather rigid.Comment: v2: minor corrections v3: reorganization, stronger rigidity statement

    Statistics and compression of scl

    Full text link
    We obtain sharp estimates on the growth rate of stable commutator length on random (geodesic) words, and on random walks, in hyperbolic groups and groups acting nondegenerately on hyperbolic spaces. In either case, we show that with high probability stable commutator length of an element of length nn is of order n/lognn/\log{n}. This establishes quantitative refinements of qualitative results of Bestvina-Fujiwara and others on the infinite dimensionality of 2-dimensional bounded cohomology in groups acting suitably on hyperbolic spaces, in the sense that we can control the geometry of the unit balls in these normed vector spaces (or rather, in random subspaces of their normed duals). As a corollary of our methods, we show that an element obtained by random walk of length nn in a mapping class group cannot be written as a product of fewer than O(n/logn)O(n/\log{n}) reducible elements, with probability going to 1 as nn goes to infinity. We also show that the translation length on the complex of free factors of a random walk of length nn on the outer automorphism group of a free group grows linearly in nn.Comment: Minor edits arising from referee's comments; 45 page

    The Right Mutation Strength for Multi-Valued Decision Variables

    Full text link
    The most common representation in evolutionary computation are bit strings. This is ideal to model binary decision variables, but less useful for variables taking more values. With very little theoretical work existing on how to use evolutionary algorithms for such optimization problems, we study the run time of simple evolutionary algorithms on some OneMax-like functions defined over Ω={0,1,,r1}n\Omega = \{0, 1, \dots, r-1\}^n. More precisely, we regard a variety of problem classes requesting the component-wise minimization of the distance to an unknown target vector zΩz \in \Omega. For such problems we see a crucial difference in how we extend the standard-bit mutation operator to these multi-valued domains. While it is natural to select each position of the solution vector to be changed independently with probability 1/n1/n, there are various ways to then change such a position. If we change each selected position to a random value different from the original one, we obtain an expected run time of Θ(nrlogn)\Theta(nr \log n). If we change each selected position by either +1+1 or 1-1 (random choice), the optimization time reduces to Θ(nr+nlogn)\Theta(nr + n\log n). If we use a random mutation strength i{0,1,,r1}ni \in \{0,1,\ldots,r-1\}^n with probability inversely proportional to ii and change the selected position by either +i+i or i-i (random choice), then the optimization time becomes Θ(nlog(r)(log(n)+log(r)))\Theta(n \log(r)(\log(n)+\log(r))), bringing down the dependence on rr from linear to polylogarithmic. One of our results depends on a new variant of the lower bounding multiplicative drift theorem.Comment: an extended abstract of this work is to appear at GECCO 201

    Upper Bounds on the Runtime of the Univariate Marginal Distribution Algorithm on OneMax

    Full text link
    A runtime analysis of the Univariate Marginal Distribution Algorithm (UMDA) is presented on the OneMax function for wide ranges of its parameters μ\mu and λ\lambda. If μclogn\mu\ge c\log n for some constant c>0c>0 and λ=(1+Θ(1))μ\lambda=(1+\Theta(1))\mu, a general bound O(μn)O(\mu n) on the expected runtime is obtained. This bound crucially assumes that all marginal probabilities of the algorithm are confined to the interval [1/n,11/n][1/n,1-1/n]. If μcnlogn\mu\ge c' \sqrt{n}\log n for a constant c>0c'>0 and λ=(1+Θ(1))μ\lambda=(1+\Theta(1))\mu, the behavior of the algorithm changes and the bound on the expected runtime becomes O(μn)O(\mu\sqrt{n}), which typically even holds if the borders on the marginal probabilities are omitted. The results supplement the recently derived lower bound Ω(μn+nlogn)\Omega(\mu\sqrt{n}+n\log n) by Krejca and Witt (FOGA 2017) and turn out as tight for the two very different values μ=clogn\mu=c\log n and μ=cnlogn\mu=c'\sqrt{n}\log n. They also improve the previously best known upper bound O(nlognloglogn)O(n\log n\log\log n) by Dang and Lehre (GECCO 2015).Comment: Version 4: added illustrations and experiments; improved presentation in Section 2.2; to appear in Algorithmica; the final publication is available at Springer via http://dx.doi.org/10.1007/s00453-018-0463-
    corecore