7,144 research outputs found

    Closed geodesics and billiards on quadrics related to elliptic KdV solutions

    Get PDF
    We consider algebraic geometrical properties of the integrable billiard on a quadric Q with elastic impacts along another quadric confocal to Q. These properties are in sharp contrast with those of the ellipsoidal Birkhoff billiards. Namely, generic complex invariant manifolds are not Abelian varieties, and the billiard map is no more algebraic. A Poncelet-like theorem for such system is known. We give explicit sufficient conditions both for closed geodesics and periodic billiard orbits on Q and discuss their relation with the elliptic KdV solutions and elliptic Calogero systemComment: 23 pages, Latex, 1 figure Postscrip

    Development of an unsteady aerodynamic analysis for finite-deflection subsonic cascades

    Get PDF
    An unsteady potential flow analysis, which accounts for the effects of blade geometry and steady turning, was developed to predict aerodynamic forces and moments associated with free vibration or flutter phenomena in the fan, compressor, or turbine stages of modern jet engines. Based on the assumption of small amplitude blade motions, the unsteady flow is governed by linear equations with variable coefficients which depend on the underlying steady low. These equations were approximated using difference expressions determined from an implicit least squares development and applicable on arbitrary grids. The resulting linear system of algebraic equations is block tridiagonal, which permits an efficient, direct (i.e., noniterative) solution. The solution procedure was extended to treat blades with rounded or blunt edges at incidence relative to the inlet flow

    Three-dimensional quasi-periodic shifted Green function throughout the spectrum--including Wood anomalies

    Get PDF
    This work presents an efficient method for evaluation of wave scattering by doubly periodic diffraction gratings at or near "Wood anomaly frequencies". At these frequencies, one or more grazing Rayleigh waves exist, and the lattice sum for the quasi-periodic Green function ceases to exist. We present a modification of this sum by adding two types of terms to it. The first type adds linear combinations of "shifted" Green functions, ensuring that the spatial singularities introduced by these terms are located below the grating and therefore outside of the physical domain. With suitable coefficient choices these terms annihilate the growing contributions in the original lattice sum and yield algebraic convergence. Convergence of arbitrarily high order can be obtained by including sufficiently many shifts. The second type of added terms are quasi-periodic plane wave solutions of the Helmholtz equation which reinstate certain necessary grazing modes without leading to blow-up at Wood anomalies. Using the new quasi-periodic Green function, we establish, for the first time, that the Dirichlet problem of scattering by a smooth doubly periodic scattering surface at a Wood frequency is uniquely solvable. We also present an efficient high-order numerical method based on the this new Green function for the problem of scattering by doubly periodic three-dimensional surfaces at and around Wood frequencies. We believe this is the first solver in existence that is applicable to Wood-frequency doubly periodic scattering problems. We demonstrate the proposed approach by means of applications to problems of acoustic scattering by doubly periodic gratings at various frequencies, including frequencies away from, at, and near Wood anomalies

    Phase Structure and Compactness

    Get PDF
    In order to study the influence of compactness on low-energy properties, we compare the phase structures of the compact and non-compact two-dimensional multi-frequency sine-Gordon models. It is shown that the high-energy scaling of the compact and non-compact models coincides, but their low-energy behaviors differ. The critical frequency β2=8π\beta^2 = 8\pi at which the sine-Gordon model undergoes a topological phase transition is found to be unaffected by the compactness of the field since it is determined by high-energy scaling laws. However, the compact two-frequency sine-Gordon model has first and second order phase transitions determined by the low-energy scaling: we show that these are absent in the non-compact model.Comment: 21 pages, 5 figures, minor changes, final version, accepted for publication in JHE

    Fast multi-dimensional scattered data approximation with Neumann boundary conditions

    Full text link
    An important problem in applications is the approximation of a function ff from a finite set of randomly scattered data f(xj)f(x_j). A common and powerful approach is to construct a trigonometric least squares approximation based on the set of exponentials {e2πikx}\{e^{2\pi i kx}\}. This leads to fast numerical algorithms, but suffers from disturbing boundary effects due to the underlying periodicity assumption on the data, an assumption that is rarely satisfied in practice. To overcome this drawback we impose Neumann boundary conditions on the data. This implies the use of cosine polynomials cos(πkx)\cos (\pi kx) as basis functions. We show that scattered data approximation using cosine polynomials leads to a least squares problem involving certain Toeplitz+Hankel matrices. We derive estimates on the condition number of these matrices. Unlike other Toeplitz+Hankel matrices, the Toeplitz+Hankel matrices arising in our context cannot be diagonalized by the discrete cosine transform, but they still allow a fast matrix-vector multiplication via DCT which gives rise to fast conjugate gradient type algorithms. We show how the results can be generalized to higher dimensions. Finally we demonstrate the performance of the proposed method by applying it to a two-dimensional geophysical scattered data problem

    Optical signatures of nonlocal plasmons in graphene

    Get PDF
    We theoretically investigate under which conditions nonlocal plasmon response in monolayer graphene can be detected. To this purpose, we study optical scattering off graphene plasmon resonances coupled using a subwavelength dielectric grating. We compute the graphene conductivity using the Random Phase Approximation (RPA) obtaining a nonlocal conductivity and we calculate the optical scattering of the graphene-grating structure. We then compare this with the scattering amplitudes obtained if graphene is modeled by the local RPA conductivity commonly used in the literature. We find that the graphene plasmon wavelength calculated from the local model may deviate up to 20%20\% from the more accurate nonlocal model in the small-wavelength (large-qq) regime. We also find substantial differences in the scattering amplitudes obtained from the two models. However, these differences in response are pronounced only for small grating periods and low temperatures compared to the Fermi temperature.Comment: Accepted for publication in Physical Review B. 15 pages, 9 figure

    Quantum Logical States and Operators for Josephson-like Systems

    Full text link
    We give a formal algebraic description of Josephson-type quantum dynamical systems, i.e., Hamiltonian systems with a cos theta-like potential term. The two-boson Heisenberg algebra plays for such systems the role that the h(1) algebra does for the harmonic oscillator. A single Josephson junction is selected as a representative of Josephson systems. We construct both logical states (codewords) and logical (gate) operators in the superconductive regime. The codewords are the even and odd coherent states of the two-boson algebra: they are shift-resistant and robust, due to squeezing. The logical operators acting on the qubit codewords are expressed in terms of operators in the enveloping of the two-boson algebra. Such a scheme appears to be relevant for quantum information applications.Comment: 12 pages in RevTex. In press, Journal of Physics A/Letter

    Lattice potentials and fermions in holographic non Fermi-liquids: hybridizing local quantum criticality

    Get PDF
    We study lattice effects in strongly coupled systems of fermions at a finite density described by a holographic dual consisting of fermions in Anti-de-Sitter space in the presence of a Reissner-Nordstrom black hole. The lattice effect is encoded by a periodic modulation of the chemical potential with a wavelength of order of the intrinsic length scales of the system. This corresponds with a highly complicated "band structure" problem in AdS, which we only manage to solve in the weak potential limit. The "domain wall" fermions in AdS encoding for the Fermi surfaces in the boundary field theory diffract as usually against the periodic lattice, giving rise to band gaps. However, the deep infrared of the field theory as encoded by the near horizon AdS2 geometry in the bulk reacts in a surprising way to the weak potential. The hybridization of the fermions bulk dualizes into a linear combination of CFT1 "local quantum critical" propagators in the bulk, characterized by momentum dependent exponents displaced by lattice Umklapp vectors. This has the consequence that the metals showing quasi-Fermi surfaces cannot be localized in band insulators. In the AdS2 metal regime, where the conformal dimension of the fermionic operator is large and no Fermi surfaces are present at low T/\mu, the lattice gives rise to a characteristic dependence of the energy scaling as a function of momentum. We predict crossovers from a high energy standard momentum AdS2 scaling to a low energy regime where exponents found associated with momenta "backscattered" to a lower Brillioun zone in the extended zone scheme. We comment on how these findings can be used as a unique fingerprint for the detection of AdS2 like "pseudogap metals" in the laboratory.Comment: 42 pages, 5 figures; v2, minor correction, to appear in JHE
    corecore