1,938 research outputs found

    A first order system least squares method for the Helmholtz equation

    Full text link
    We present a first order system least squares (FOSLS) method for the Helmholtz equation at high wave number k, which always deduces Hermitian positive definite algebraic system. By utilizing a non-trivial solution decomposition to the dual FOSLS problem which is quite different from that of standard finite element method, we give error analysis to the hp-version of the FOSLS method where the dependence on the mesh size h, the approximation order p, and the wave number k is given explicitly. In particular, under some assumption of the boundary of the domain, the L2 norm error estimate of the scalar solution from the FOSLS method is shown to be quasi optimal under the condition that kh/p is sufficiently small and the polynomial degree p is at least O(\log k). Numerical experiments are given to verify the theoretical results

    Unique continuation for the Helmholtz equation using stabilized finite element methods

    Get PDF
    In this work we consider the computational approximation of a unique continuation problem for the Helmholtz equation using a stabilized finite element method. First conditional stability estimates are derived for which, under a convexity assumption on the geometry, the constants grow at most linearly in the wave number. Then these estimates are used to obtain error bounds for the finite element method that are explicit with respect to the wave number. Some numerical illustrations are given.Comment: corrected typos; included suggestions from reviewer

    Primal dual mixed finite element methods for indefinite advection--diffusion equations

    Get PDF
    We consider primal-dual mixed finite element methods for the advection--diffusion equation. For the primal variable we use standard continuous finite element space and for the flux we use the Raviart-Thomas space. We prove optimal a priori error estimates in the energy- and the L2L^2-norms for the primal variable in the low Peclet regime. In the high Peclet regime we also prove optimal error estimates for the primal variable in the H(div)H(div) norm for smooth solutions. Numerically we observe that the method eliminates the spurious oscillations close to interior layers that pollute the solution of the standard Galerkin method when the local Peclet number is high. This method, however, does produce spurious solutions when outflow boundary layer presents. In the last section we propose two simple strategies to remove such numerical artefacts caused by the outflow boundary layer and validate them numerically.Comment: 25 pages, 6 figures, 5 table
    • …
    corecore