9,268 research outputs found

    Cooperation Evolution in Random Multiplicative Environments

    Full text link
    Most real life systems have a random component: the multitude of endogenous and exogenous factors influencing them result in stochastic fluctuations of the parameters determining their dynamics. These empirical systems are in many cases subject to noise of multiplicative nature. The special properties of multiplicative noise as opposed to additive noise have been noticed for a long while. Even though apparently and formally the difference between free additive vs. multiplicative random walks consists in just a move from normal to log-normal distributions, in practice the implications are much more far reaching. While in an additive context the emergence and survival of cooperation requires special conditions (especially some level of reward, punishment, reciprocity), we find that in the multiplicative random context the emergence of cooperation is much more natural and effective. We study the various implications of this observation and its applications in various contexts.Comment: 20 pages 7 figur

    Redistribution spurs growth by using a portfolio effect on human capital

    Get PDF
    We demonstrate by mathematical analysis and systematic computer simulations that redistribution can lead to sustainable growth in a society. The human capital dynamics of each agent is described by a stochastic multiplicative process which, in the long run, leads to the destruction of individual human capital and the extinction of the individualistic society. When agents are linked by fully-redistributive taxation the situation might turn to individual growth in the long run. We consider that a government collects a proportion of income and reduces it by a fraction as costs for administration (efficiency losses). The remaining public good is equally redistributed to all agents. We derive conditions under which the destruction of human capital can be turned into sustainable growth, despite the losses from the random growth process and despite the administrative costs. Sustainable growth is induced by redistribution. This effect could be explained by a simple portfolio-effect which re-balances individual stochastic processes. The findings are verified for three different tax schemes: proportional tax, taking proportional more from the rich, and proportionally more from the poor. We discuss which of these tax schemes is optimal with respect to maximize growth under a fixed rate of administrative costs, or with respect to maximize the governmental income. This leads us to some general conclusions about governmental decisions, the relation to public good games, and the use of taxation in a risk taking society.Comment: 12 pages, plus 8 Figures, plus matlab-code to run simulation and produce figur

    Aging dynamics of non-linear elastic interfaces: the Kardar-Parisi-Zhang equation

    Full text link
    In this work, the out-of-equilibrium dynamics of the Kardar-Parisi-Zhang equation in (1+1) dimensions is studied by means of numerical simulations, focussing on the two-times evolution of an interface in the absence of any disordered environment. This work shows that even in this simple case, a rich aging behavior develops. A multiplicative aging scenario for the two-times roughness of the system is observed, characterized by the same growth exponent as in the stationary regime. The analysis permits the identification of the relevant growing correlation length, accounting for the important scaling variables in the system. The distribution function of the two-times roughness is also computed and described in terms of a generalized scaling relation. These results give good insight into the glassy dynamics of the important case of a non-linear elastic line in a disordered medium.Comment: 14 pages, 6 figure

    Active Queue Management for Fair Resource Allocation in Wireless Networks

    Get PDF
    This paper investigates the interaction between end-to-end flow control and MAC-layer scheduling on wireless links. We consider a wireless network with multiple users receiving information from a common access point; each user suffers fading, and a scheduler allocates the channel based on channel quality,but subject to fairness and latency considerations. We show that the fairness property of the scheduler is compromised by the transport layer flow control of TCP New Reno. We provide a receiver-side control algorithm, CLAMP, that remedies this situation. CLAMP works at a receiver to control a TCP sender by setting the TCP receiver's advertised window limit, and this allows the scheduler to allocate bandwidth fairly between the users

    The Whole is Greater than the Sum of the Parts: Optimizing the Joint Science Return from LSST, Euclid and WFIRST

    Get PDF
    The focus of this report is on the opportunities enabled by the combination of LSST, Euclid and WFIRST, the optical surveys that will be an essential part of the next decade's astronomy. The sum of these surveys has the potential to be significantly greater than the contributions of the individual parts. As is detailed in this report, the combination of these surveys should give us multi-wavelength high-resolution images of galaxies and broadband data covering much of the stellar energy spectrum. These stellar and galactic data have the potential of yielding new insights into topics ranging from the formation history of the Milky Way to the mass of the neutrino. However, enabling the astronomy community to fully exploit this multi-instrument data set is a challenging technical task: for much of the science, we will need to combine the photometry across multiple wavelengths with varying spectral and spatial resolution. We identify some of the key science enabled by the combined surveys and the key technical challenges in achieving the synergies.Comment: Whitepaper developed at June 2014 U. Penn Workshop; 28 pages, 3 figure

    Methods for measuring the citations and productivity of scientists across time and discipline

    Get PDF
    Publication statistics are ubiquitous in the ratings of scientific achievement, with citation counts and paper tallies factoring into an individual's consideration for postdoctoral positions, junior faculty, tenure, and even visa status for international scientists. Citation statistics are designed to quantify individual career achievement, both at the level of a single publication, and over an individual's entire career. While some academic careers are defined by a few significant papers (possibly out of many), other academic careers are defined by the cumulative contribution made by the author's publications to the body of science. Several metrics have been formulated to quantify an individual's publication career, yet none of these metrics account for the dependence of citation counts and journal size on time. In this paper, we normalize publication metrics across both time and discipline in order to achieve a universal framework for analyzing and comparing scientific achievement. We study the publication careers of individual authors over the 50-year period 1958-2008 within six high-impact journals: CELL, the New England Journal of Medicine (NEJM), Nature, the Proceedings of the National Academy of Science (PNAS), Physical Review Letters (PRL), and Science. In comparing the achievement of authors within each journal, we uncover quantifiable statistical regularity in the probability density function (pdf) of scientific achievement across both time and discipline. The universal distribution of career success within these arenas for publication raises the possibility that a fundamental driving force underlying scientific achievement is the competitive nature of scientific advancement.Comment: 25 pages in 1 Column Preprint format, 7 Figures, 4 Tables. Version II: changes made in response to referee comments. Note: change in definition of "Paper shares.
    corecore