65,546 research outputs found

    An agent-based dynamic information network for supply chain management

    Get PDF
    One of the main research issues in supply chain management is to improve the global efficiency of supply chains. However, the improvement efforts often fail because supply chains are complex, are subject to frequent changes, and collaboration and information sharing in the supply chains are often infeasible. This paper presents a practical collaboration framework for supply chain management wherein multi-agent systems form dynamic information networks and coordinate their production and order planning according to synchronized estimation of market demands. In the framework, agents employ an iterative relaxation contract net protocol to find the most desirable suppliers by using data envelopment analysis. Furthermore, the chain of buyers and suppliers, from the end markets to raw material suppliers, form dynamic information networks for synchronized planning. This paper presents an agent-based dynamic information network for supply chain management and discusses the associated pros and cons

    Agent Technology in Supply Chains and Networks: An exploration of high potential future applications

    Get PDF
    This paper reports on an ongoing research project that\ud is aimed at evaluating how software agents can improve\ud performance of supply chains and networks. To conduct\ud this evaluation, first a framework is developed to classify\ud potential applications of software agents to supply\ud networks. The framework was used in workshop sessions\ud with logistics and information systems experts from\ud industry, software/consultancy and academia to identify\ud promising areas for agents. Based on the framework and\ud the outcome of the workshop sessions, this paper presents\ud promising application areas for the near future and\ud beyond

    Collaborative and Cross-Stakeholder Ontology Engineering

    Get PDF
    One of the major challenges in developing ontologies is to efficiently merge domain knowledge and expert knowledge to enable efficient and effective work on formal modelling of the domain in focus. This paper outlines the current state of developments in the Semantically Connected Semiconductor Supply Chains (SC3) project and its application in the BMBF-funded Cognitive Economy Intelligence Platform for Economic Ecosystem Resilience (CoyPu) project. We are using the SC3 Ontology Platform in CoyPu to promote effective information sharing among the various stakeholders in the development of the ontology. Thus, the application of SC3 Ontology Platform is used to ensure that the knowledge of non-knowledge workers (domain experts) and knowledge workers come together efficiently. This paper first introduces the CoyPu project and the current ontology development; then the SC3 Ontology Platform and its main components are presented. The paper concludes with the analysis of a first usability evaluation

    From supply chains to demand networks. Agents in retailing: the electrical bazaar

    Get PDF
    A paradigm shift is taking place in logistics. The focus is changing from operational effectiveness to adaptation. Supply Chains will develop into networks that will adapt to consumer demand in almost real time. Time to market, capacity of adaptation and enrichment of customer experience seem to be the key elements of this new paradigm. In this environment emerging technologies like RFID (Radio Frequency ID), Intelligent Products and the Internet, are triggering a reconsideration of methods, procedures and goals. We present a Multiagent System framework specialized in retail that addresses these changes with the use of rational agents and takes advantages of the new market opportunities. Like in an old bazaar, agents able to learn, cooperate, take advantage of gossip and distinguish between collaborators and competitors, have the ability to adapt, learn and react to a changing environment better than any other structure. Keywords: Supply Chains, Distributed Artificial Intelligence, Multiagent System.Postprint (published version

    Multi Agent Systems in Logistics: A Literature and State-of-the-art Review

    Get PDF
    Based on a literature survey, we aim to answer our main question: ñ€ƓHow should we plan and execute logistics in supply chains that aim to meet todayñ€ℱs requirements, and how can we support such planning and execution using IT?ñ€ Todayñ€ℱs requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting todayñ€ℱs requirements in supply chain planning and execution.supply chain;MAS;multi agent systems

    Towards a Novel Cooperative Logistics Information System Framework

    Get PDF
    Supply Chains and Logistics have a growing importance in global economy. Supply Chain Information Systems over the world are heterogeneous and each one can both produce and receive massive amounts of structured and unstructured data in real-time, which are usually generated by information systems, connected objects or manually by humans. This heterogeneity is due to Logistics Information Systems components and processes that are developed by different modelling methods and running on many platforms; hence, decision making process is difficult in such multi-actor environment. In this paper we identify some current challenges and integration issues between separately designed Logistics Information Systems (LIS), and we propose a Distributed Cooperative Logistics Platform (DCLP) framework based on NoSQL, which facilitates real-time cooperation between stakeholders and improves decision making process in a multi-actor environment. We included also a case study of Hospital Supply Chain (HSC), and a brief discussion on perspectives and future scope of work
    • 

    corecore