295 research outputs found

    High Performance Large Graph Analytics by Enhancing Locality

    Get PDF
    Graphs are widely used in a variety of domains for representing entities and their relationship to each other. Graph analytics helps to understand, detect, extract and visualize insightful relationships between different entities. Graph analytics has a wide range of applications in various domains including computational biology, commerce, intelligence, health care and transportation. The breadth of problems that require large graph analytics is growing rapidly resulting in a need for fast and efficient graph processing. One of the major challenges in graph processing is poor locality of reference. Locality of reference refers to the phenomenon of frequently accessing the same memory location or adjacent memory locations. Applications with poor data locality reduce the effectiveness of the cache memory. They result in large number of cache misses, requiring access to high latency main memory. Therefore, it is essential to have good locality for good performance. Most graph processing applications have highly random memory access patterns. Coupled with the current large sizes of the graphs, they result in poor cache utilization. Additionally, the computation to data access ratio in many graph processing applications is very low, making it difficult to cover the memory latency using computation. It is also challenging to efficiently parallelize most graph applications. Many graphs in real world have unbalanced degree distribution. It is difficult to achieve a balanced workload for such graphs. The parallelism in graph applications is generally fine-grained in nature. This calls for efficient synchronization and communication between the processing units. Techniques for enhancing locality have been well studied in the context of regular applications like linear algebra. Those techniques are in most cases not applicable to the graph problems. In this dissertation, we propose two techniques for enhancing locality in graph algorithms: access transformation and task-set reduction. Access transformation can be applied to algorithms to improve the spatial locality by changing the random access pattern to sequential access. It is applicable to iterative algorithms that process random vertices/edges in each iteration. The task-set reduction technique can be applied to enhance the temporal locality. It is applicable to algorithms which repeatedly access the same data to perform certain task. Using the two techniques, we propose novel algorithms for three graph problems: k-core decomposition, maximal clique enumeration and triangle listing. We have implemented the algorithms. The results show that these algorithms provide significant improvement in performance and also scale well

    Rule-based multi-level modeling of cell biological systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteins, individual cells, and cell populations denote different levels of an organizational hierarchy, each of which with its own dynamics. Multi-level modeling is concerned with describing a system at these different levels and relating their dynamics. Rule-based modeling has increasingly attracted attention due to enabling a concise and compact description of biochemical systems. In addition, it allows different methods for model analysis, since more than one semantics can be defined for the same syntax.</p> <p>Results</p> <p>Multi-level modeling implies the hierarchical nesting of model entities and explicit support for downward and upward causation between different levels. Concepts to support multi-level modeling in a rule-based language are identified. To those belong rule schemata, hierarchical nesting of species, assigning attributes and solutions to species at each level and preserving content of nested species while applying rules. Further necessities are the ability to apply rules and flexibly define reaction rate kinetics and constraints on nested species as well as species that are nested within others. An example model is presented that analyses the interplay of an intracellular control circuit with states at cell level, its relation to cell division, and connections to intercellular communication within a population of cells. The example is described in ML-Rules - a rule-based multi-level approach that has been realized within the plug-in-based modeling and simulation framework JAMES II.</p> <p>Conclusions</p> <p>Rule-based languages are a suitable starting point for developing a concise and compact language for multi-level modeling of cell biological systems. The combination of nesting species, assigning attributes, and constraining reactions according to these attributes is crucial in achieving the desired expressiveness. Rule schemata allow a concise and compact description of complex models. As a result, the presented approach facilitates developing and maintaining multi-level models that, for instance, interrelate intracellular and intercellular dynamics.</p

    Towards Structural Stability of Social Networks

    Full text link
    The structural stability of a social network indicates the ability of the network to maintain a sustainable service, which is important for both the network holders and the participants. Graphs are widely used to model social networks, where the coreness of a vertex (node) has been validated as the "best practice" for capturing a user's engagement. Based on this argument, we study the following problems: 1) reinforcing the network structural stability by detecting critical users, with its efficient solution in distributed computation environment; 2) monitoring each user's influence on the network structural stability. Firstly, we aim to reinforce a social network in a global manner, instead of focusing on a local view as existing works, e.g., the anchored k-core problem aims to enlarge the size of k-core with a fixed input k. We propose a new model so-called the anchored coreness problem: anchoring a small number of users to maximize the coreness gain (the total increment of coreness) of all the users in the network. We prove the problem is NP-hard and show it is more challenging than the existing local-view problems. An efficient greedy algorithm is proposed with novel techniques on pruning search space and reusing the intermediate results. The algorithm is also extended to distributed environment with a novel graph partition strategy to ensure the computing independency of each machine. Extensive experiments on real-life data demonstrate that our model is effective for reinforcing social networks and our algorithms are efficient. Secondly, although the static engagement of a user is well estimated by its coreness, each user's influence on other users is not well monitored when its engagement is weakened or strengthened. Besides, the dynamic of user engagement has not been well captured for evolving networks. We systematically study the network dynamic against the engagement change of each user. The influence of a user is monitored via two novel concepts: the collapsed power to measure the effect of user weakening, and the anchored power to measure the effect of user strengthening. The two concepts can be naturally integrated such that a unified offline algorithm is proposed to compute both the collapsed and anchored followers for each user. When the network structure evolves, online techniques are designed to maintain the users' followers, which is faster than redoing the offline algorithm by around 3 orders of magnitude

    Geometric and Algebraic Combinatorics

    Get PDF
    The 2015 Oberwolfach meeting “Geometric and Algebraic Combinatorics” was organized by Gil Kalai (Jerusalem), Isabella Novik (Seattle), Francisco Santos (Santander), and Volkmar Welker (Marburg). It covered a wide variety of aspects of Discrete Geometry, Algebraic Combinatorics with geometric flavor, and Topological Combinatorics. Some of the highlights of the conference included (1) counterexamples to the topological Tverberg conjecture, and (2) the latest results around the Heron-Rota-Welsh conjecture

    Writing (new) worlds: poetry and place in a time of emergency

    Get PDF

    The importance of thermodynamics for molecular systems, and the importance of molecular systems for thermodynamics

    Get PDF

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF
    • 

    corecore