482 research outputs found

    Mechanizing a Process Algebra for Network Protocols

    Get PDF
    This paper presents the mechanization of a process algebra for Mobile Ad hoc Networks and Wireless Mesh Networks, and the development of a compositional framework for proving invariant properties. Mechanizing the core process algebra in Isabelle/HOL is relatively standard, but its layered structure necessitates special treatment. The control states of reactive processes, such as nodes in a network, are modelled by terms of the process algebra. We propose a technique based on these terms to streamline proofs of inductive invariance. This is not sufficient, however, to state and prove invariants that relate states across multiple processes (entire networks). To this end, we propose a novel compositional technique for lifting global invariants stated at the level of individual nodes to networks of nodes.Comment: This paper is an extended version of arXiv:1407.3519. The Isabelle/HOL source files, and a full proof document, are available in the Archive of Formal Proofs, at http://afp.sourceforge.net/entries/AWN.shtm

    Proving the Absence of Microarchitectural Timing Channels

    Full text link
    Microarchitectural timing channels are a major threat to computer security. A set of OS mechanisms called time protection was recently proposed as a principled way of preventing information leakage through such channels and prototyped in the seL4 microkernel. We formalise time protection and the underlying hardware mechanisms in a way that allows linking them to the information-flow proofs that showed the absence of storage channels in seL4.Comment: Scott Buckley and Robert Sison were joint lead author

    From LCF to Isabelle/HOL

    Get PDF
    Interactive theorem provers have developed dramatically over the past four decades, from primitive beginnings to today's powerful systems. Here, we focus on Isabelle/HOL and its distinctive strengths. They include automatic proof search, borrowing techniques from the world of first order theorem proving, but also the automatic search for counterexamples. They include a highly readable structured language of proofs and a unique interactive development environment for editing live proof documents. Everything rests on the foundation conceived by Robin Milner for Edinburgh LCF: a proof kernel, using abstract types to ensure soundness and eliminate the need to store proofs. Compared with the research prototypes of the 1970s, Isabelle is a practical and versatile tool. It is used by system designers, mathematicians and many others

    Analyzing FreeRTOS Scheduling Behaviors with the Spin Model Checker

    Full text link
    FreeRTOS is a real-time operating system with configurable scheduling policies. Its portability and configurability make FreeRTOS one of the most popular real-time operating systems for embedded devices. We formally analyze the FreeRTOS scheduler on ARM Cortex-M4 processor in this work. Specifically, we build a formal model for the FreeRTOS ARM Cortex-M4 port and apply model checking to find errors in our models for FreeRTOS example applications. Intriguingly, several errors are found in our application models under different scheduling policies. In order to confirm our findings, we modify application programs distributed by FreeRTOS and reproduce assertion failures on the STM32F429I-DISC1 board

    A Resolution Based Automated Theorem Proving System Using Concurrent Processing Approach

    Get PDF
    Semenjak pembangunan sistem pembuktian teorem automatik berdasarkan resolusi yang pertama di pertengahan 1960an, terdapat penyelidikan yang berterusan di dalam bidang ini untuk mempertingkatkan proses penyelesaian masalah di dalam sistemsistem pembuktian teorem. Penyelidikan pada masa kini di dalam bidang ini adalah tertumpu kepada penggunaan kaedah-kaedah pengideksan pangkalan data dan pemprosesan selari untuk mempertingkatkan kecekapan sistem-sistem tersebut. Apa yang dimaksudkan tentang kecekapan sistem adalah tertumpu kepada kelajuan pedaksanaan sistem di dalam pembuktian teorem oleh suatu sistem pembuktian teorem automatik. Ever since the first resolution based automated theorem proving system was developed on a computer in the mid 1960s, there has been constant research in this area on enhancing the problem solving process of the theorem provers. The recent trend in this area is towards exploiting database indexing and parallel processing in increasing the efficiency of these systems, in particular the execution speed of the theorem prover in proving a theorem

    PA-Boot: A Formally Verified Authentication Protocol for Multiprocessor Secure Boot

    Full text link
    Hardware supply-chain attacks are raising significant security threats to the boot process of multiprocessor systems. This paper identifies a new, prevalent hardware supply-chain attack surface that can bypass multiprocessor secure boot due to the absence of processor-authentication mechanisms. To defend against such attacks, we present PA-Boot, the first formally verified processor-authentication protocol for secure boot in multiprocessor systems. PA-Boot is proved functionally correct and is guaranteed to detect multiple adversarial behaviors, e.g., processor replacements, man-in-the-middle attacks, and tampering with certificates. The fine-grained formalization of PA-Boot and its fully mechanized security proofs are carried out in the Isabelle/HOL theorem prover with 306 lemmas/theorems and ~7,100 LoC. Experiments on a proof-of-concept implementation indicate that PA-Boot can effectively identify boot-process attacks with a considerably minor overhead and thereby improve the security of multiprocessor systems.Comment: Manuscript submitted to IEEE Trans. Dependable Secure Compu

    Interactive communication system simulator ICOSS.

    Get PDF

    Development and analysis of the Software Implemented Fault-Tolerance (SIFT) computer

    Get PDF
    SIFT (Software Implemented Fault Tolerance) is an experimental, fault-tolerant computer system designed to meet the extreme reliability requirements for safety-critical functions in advanced aircraft. Errors are masked by performing a majority voting operation over the results of identical computations, and faulty processors are removed from service by reassigning computations to the nonfaulty processors. This scheme has been implemented in a special architecture using a set of standard Bendix BDX930 processors, augmented by a special asynchronous-broadcast communication interface that provides direct, processor to processor communication among all processors. Fault isolation is accomplished in hardware; all other fault-tolerance functions, together with scheduling and synchronization are implemented exclusively by executive system software. The system reliability is predicted by a Markov model. Mathematical consistency of the system software with respect to the reliability model has been partially verified, using recently developed tools for machine-aided proof of program correctness
    corecore