30,052 research outputs found

    Generative Adversarial Networks and Conditional Random Fields for Hyperspectral Image Classification

    Full text link
    In this paper, we address the hyperspectral image (HSI) classification task with a generative adversarial network and conditional random field (GAN-CRF) -based framework, which integrates a semi-supervised deep learning and a probabilistic graphical model, and make three contributions. First, we design four types of convolutional and transposed convolutional layers that consider the characteristics of HSIs to help with extracting discriminative features from limited numbers of labeled HSI samples. Second, we construct semi-supervised GANs to alleviate the shortage of training samples by adding labels to them and implicitly reconstructing real HSI data distribution through adversarial training. Third, we build dense conditional random fields (CRFs) on top of the random variables that are initialized to the softmax predictions of the trained GANs and are conditioned on HSIs to refine classification maps. This semi-supervised framework leverages the merits of discriminative and generative models through a game-theoretical approach. Moreover, even though we used very small numbers of labeled training HSI samples from the two most challenging and extensively studied datasets, the experimental results demonstrated that spectral-spatial GAN-CRF (SS-GAN-CRF) models achieved top-ranking accuracy for semi-supervised HSI classification.Comment: Accepted by IEEE T-CY

    Transfer Adaptation Learning: A Decade Survey

    Full text link
    The world we see is ever-changing and it always changes with people, things, and the environment. Domain is referred to as the state of the world at a certain moment. A research problem is characterized as transfer adaptation learning (TAL) when it needs knowledge correspondence between different moments/domains. Conventional machine learning aims to find a model with the minimum expected risk on test data by minimizing the regularized empirical risk on the training data, which, however, supposes that the training and test data share similar joint probability distribution. TAL aims to build models that can perform tasks of target domain by learning knowledge from a semantic related but distribution different source domain. It is an energetic research filed of increasing influence and importance, which is presenting a blowout publication trend. This paper surveys the advances of TAL methodologies in the past decade, and the technical challenges and essential problems of TAL have been observed and discussed with deep insights and new perspectives. Broader solutions of transfer adaptation learning being created by researchers are identified, i.e., instance re-weighting adaptation, feature adaptation, classifier adaptation, deep network adaptation and adversarial adaptation, which are beyond the early semi-supervised and unsupervised split. The survey helps researchers rapidly but comprehensively understand and identify the research foundation, research status, theoretical limitations, future challenges and under-studied issues (universality, interpretability, and credibility) to be broken in the field toward universal representation and safe applications in open-world scenarios.Comment: 26 pages, 4 figure

    BIRADS Features-Oriented Semi-supervised Deep Learning for Breast Ultrasound Computer-Aided Diagnosis

    Full text link
    Breast ultrasound (US) is an effective imaging modality for breast cancer detection and diagnosis. US computer-aided diagnosis (CAD) systems have been developed for decades and have employed either conventional hand-crafted features or modern automatic deep-learned features, the former relying on clinical experience and the latter demanding large datasets. In this paper, we have developed a novel BIRADS-SDL network that integrates clinically-approved breast lesion characteristics (BIRADS features) into semi-supervised deep learning (SDL) to achieve accurate diagnoses with a small training dataset. Breast US images are converted to BIRADS-oriented feature maps (BFMs) using a distance-transformation coupled with a Gaussian filter. Then, the converted BFMs are used as the input of an SDL network, which performs unsupervised stacked convolutional auto-encoder (SCAE) image reconstruction guided by lesion classification. We trained the BIRADS-SDL network with an alternative learning strategy by balancing reconstruction error and classification label prediction error. We compared the performance of the BIRADS-SDL network with conventional SCAE and SDL methods that use the original images as inputs, as well as with an SCAE that use BFMs as inputs. Experimental results on two breast US datasets show that BIRADS-SDL ranked the best among the four networks, with classification accuracy around 92.00% and 83.90% on two datasets. These findings indicate that BIRADS-SDL could be promising for effective breast US lesion CAD using small datasets

    Self-Transfer Learning for Fully Weakly Supervised Object Localization

    Full text link
    Recent advances of deep learning have achieved remarkable performances in various challenging computer vision tasks. Especially in object localization, deep convolutional neural networks outperform traditional approaches based on extraction of data/task-driven features instead of hand-crafted features. Although location information of region-of-interests (ROIs) gives good prior for object localization, it requires heavy annotation efforts from human resources. Thus a weakly supervised framework for object localization is introduced. The term "weakly" means that this framework only uses image-level labeled datasets to train a network. With the help of transfer learning which adopts weight parameters of a pre-trained network, the weakly supervised learning framework for object localization performs well because the pre-trained network already has well-trained class-specific features. However, those approaches cannot be used for some applications which do not have pre-trained networks or well-localized large scale images. Medical image analysis is a representative among those applications because it is impossible to obtain such pre-trained networks. In this work, we present a "fully" weakly supervised framework for object localization ("semi"-weakly is the counterpart which uses pre-trained filters for weakly supervised localization) named as self-transfer learning (STL). It jointly optimizes both classification and localization networks simultaneously. By controlling a supervision level of the localization network, STL helps the localization network focus on correct ROIs without any types of priors. We evaluate the proposed STL framework using two medical image datasets, chest X-rays and mammograms, and achieve signiticantly better localization performance compared to previous weakly supervised approaches.Comment: 9 pages, 4 figure

    Relation Extraction : A Survey

    Full text link
    With the advent of the Internet, large amount of digital text is generated everyday in the form of news articles, research publications, blogs, question answering forums and social media. It is important to develop techniques for extracting information automatically from these documents, as lot of important information is hidden within them. This extracted information can be used to improve access and management of knowledge hidden in large text corpora. Several applications such as Question Answering, Information Retrieval would benefit from this information. Entities like persons and organizations, form the most basic unit of the information. Occurrences of entities in a sentence are often linked through well-defined relations; e.g., occurrences of person and organization in a sentence may be linked through relations such as employed at. The task of Relation Extraction (RE) is to identify such relations automatically. In this paper, we survey several important supervised, semi-supervised and unsupervised RE techniques. We also cover the paradigms of Open Information Extraction (OIE) and Distant Supervision. Finally, we describe some of the recent trends in the RE techniques and possible future research directions. This survey would be useful for three kinds of readers - i) Newcomers in the field who want to quickly learn about RE; ii) Researchers who want to know how the various RE techniques evolved over time and what are possible future research directions and iii) Practitioners who just need to know which RE technique works best in various settings

    A Survey on Object Detection in Optical Remote Sensing Images

    Full text link
    Object detection in optical remote sensing images, being a fundamental but challenging problem in the field of aerial and satellite image analysis, plays an important role for a wide range of applications and is receiving significant attention in recent years. While enormous methods exist, a deep review of the literature concerning generic object detection is still lacking. This paper aims to provide a review of the recent progress in this field. Different from several previously published surveys that focus on a specific object class such as building and road, we concentrate on more generic object categories including, but are not limited to, road, building, tree, vehicle, ship, airport, urban-area. Covering about 270 publications we survey 1) template matching-based object detection methods, 2) knowledge-based object detection methods, 3) object-based image analysis (OBIA)-based object detection methods, 4) machine learning-based object detection methods, and 5) five publicly available datasets and three standard evaluation metrics. We also discuss the challenges of current studies and propose two promising research directions, namely deep learning-based feature representation and weakly supervised learning-based geospatial object detection. It is our hope that this survey will be beneficial for the researchers to have better understanding of this research field.Comment: This manuscript is the accepted version for ISPRS Journal of Photogrammetry and Remote Sensin

    Multi-Task Identification of Entities, Relations, and Coreference for Scientific Knowledge Graph Construction

    Full text link
    We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature

    Weakly and Semi Supervised Detection in Medical Imaging via Deep Dual Branch Net

    Full text link
    This study presents a novel deep learning architecture for multi-class classification and localization of abnormalities in medical imaging illustrated through experiments on mammograms. The proposed network combines two learning branches. One branch is for region classification with a newly added normal-region class. Second branch is region detection branch for ranking regions relative to one another. Our method enables detection of abnormalities at full mammogram resolution for both weakly and semi-supervised settings. A novel objective function allows for the incorporation of local annotations into the model. We present the impact of our schemes on several performance measures for classification and localization, to evaluate the cost effectiveness of the lesion annotation effort. Our evaluation was primarily conducted over a large multi-center mammography dataset of ∼\sim3,000 mammograms with various findings. The results for weakly supervised learning showed significant improvement compared to previous approaches. We show that the time consuming local annotations involved in supervised learning can be addressed by a weakly supervised method that can leverage a subset of locally annotated data. Weakly and semi-supervised methods coupled with detection can produce a cost effective and explainable model to be adopted by radiologists in the field

    Joint auto-encoders: a flexible multi-task learning framework

    Full text link
    The incorporation of prior knowledge into learning is essential in achieving good performance based on small noisy samples. Such knowledge is often incorporated through the availability of related data arising from domains and tasks similar to the one of current interest. Ideally one would like to allow both the data for the current task and for previous related tasks to self-organize the learning system in such a way that commonalities and differences between the tasks are learned in a data-driven fashion. We develop a framework for learning multiple tasks simultaneously, based on sharing features that are common to all tasks, achieved through the use of a modular deep feedforward neural network consisting of shared branches, dealing with the common features of all tasks, and private branches, learning the specific unique aspects of each task. Once an appropriate weight sharing architecture has been established, learning takes place through standard algorithms for feedforward networks, e.g., stochastic gradient descent and its variations. The method deals with domain adaptation and multi-task learning in a unified fashion, and can easily deal with data arising from different types of sources. Numerical experiments demonstrate the effectiveness of learning in domain adaptation and transfer learning setups, and provide evidence for the flexible and task-oriented representations arising in the network

    Supervised multiview learning based on simultaneous learning of multiview intact and single view classifier

    Full text link
    Multiview learning problem refers to the problem of learning a classifier from multiple view data. In this data set, each data points is presented by multiple different views. In this paper, we propose a novel method for this problem. This method is based on two assumptions. The first assumption is that each data point has an intact feature vector, and each view is obtained by a linear transformation from the intact vector. The second assumption is that the intact vectors are discriminative, and in the intact space, we have a linear classifier to separate the positive class from the negative class. We define an intact vector for each data point, and a view-conditional transformation matrix for each view, and propose to reconstruct the multiple view feature vectors by the product of the corresponding intact vectors and transformation matrices. Moreover, we also propose a linear classifier in the intact space, and learn it jointly with the intact vectors. The learning problem is modeled by a minimization problem, and the objective function is composed of a Cauchy error estimator-based view-conditional reconstruction term over all data points and views, and a classification error term measured by hinge loss over all the intact vectors of all the data points. Some regularization terms are also imposed to different variables in the objective function. The minimization problem is solve by an iterative algorithm using alternate optimization strategy and gradient descent algorithm. The proposed algorithm shows it advantage in the compression to other multiview learning algorithms on benchmark data sets
    • …
    corecore