7,174 research outputs found

    A Comparative Analysis of STM Approaches to Reduction Operations in Irregular Applications

    Get PDF
    As a recently consolidated paradigm for optimistic concurrency in modern multicore architectures, Transactional Memory (TM) can help to the exploitation of parallelism in irregular applications when data dependence information is not available up to run- time. This paper presents and discusses how to leverage TM to exploit parallelism in an important class of irregular applications, the class that exhibits irregular reduction patterns. In order to test and compare our techniques with other solutions, they were implemented in a software TM system called ReduxSTM, that acts as a proof of concept. Basically, ReduxSTM combines two major ideas: a sequential-equivalent ordering of transaction commits that assures the correct result, and an extension of the underlying TM privatization mechanism to reduce unnecessary overhead due to reduction memory updates as well as unnecesary aborts and rollbacks. A comparative study of STM solutions, including ReduxSTM, and other more classical approaches to the parallelization of reduction operations is presented in terms of time, memory and overhead.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    FASTM: a log-based hardware transactional memory with fast abort recovery

    Get PDF
    Version management, one of the key design dimensions of Hardware Transactional Memory (HTM) systems, defines where and how transactional modifications are stored. Current HTM systems use either eager or lazy version management. Eager systems that keep new values in-place while they hold old values in a software log, suffer long delays when aborts are frequent because the pre-transactional state is recovered by software. Lazy systems that buffer new values in specialized hardware offer complex and inefficient solutions to handle hardware overflows, which are common in applications with coarse-grain transactions. In this paper, we present FASTM, an eager log-based HTM that takes advantage of the processor’s cache hierarchy to provide fast abort recovery. FASTM uses a novel coherence protocol to buffer the transactional modifications in the first level cache and to keep the non-speculative values in the higher levels of the memory hierarchy. This mechanism allows fast abort recovery of transactions that do not overflow the first level cache resources. Contrary to lazy HTM systems, committing transactions do not have to perform any actions in order to make their results visible to the rest of the system. FASTM keeps the pre-transactional state in a software-managed log as well, which permits the eviction of speculative values and enables transparent execution even in the case of cache overflow. This approach simplifies eviction policies without degrading performance, because it only falls back to a software abort recovery for transactions whose modified state has overflowed the cache. Simulation results show that FASTM achieves a speed-up of 43% compared to LogTM-SE, improving the scalability of applications with coarse-grain transactions and obtaining similar performance to an ideal eager HTM with zero-cost abort recovery.Peer ReviewedPostprint (published version

    ret2spec: Speculative Execution Using Return Stack Buffers

    Full text link
    Speculative execution is an optimization technique that has been part of CPUs for over a decade. It predicts the outcome and target of branch instructions to avoid stalling the execution pipeline. However, until recently, the security implications of speculative code execution have not been studied. In this paper, we investigate a special type of branch predictor that is responsible for predicting return addresses. To the best of our knowledge, we are the first to study return address predictors and their consequences for the security of modern software. In our work, we show how return stack buffers (RSBs), the core unit of return address predictors, can be used to trigger misspeculations. Based on this knowledge, we propose two new attack variants using RSBs that give attackers similar capabilities as the documented Spectre attacks. We show how local attackers can gain arbitrary speculative code execution across processes, e.g., to leak passwords another user enters on a shared system. Our evaluation showed that the recent Spectre countermeasures deployed in operating systems can also cover such RSB-based cross-process attacks. Yet we then demonstrate that attackers can trigger misspeculation in JIT environments in order to leak arbitrary memory content of browser processes. Reading outside the sandboxed memory region with JIT-compiled code is still possible with 80\% accuracy on average.Comment: Updating to the cam-ready version and adding reference to the original pape

    HeTM: Transactional Memory for Heterogeneous Systems

    Full text link
    Modern heterogeneous computing architectures, which couple multi-core CPUs with discrete many-core GPUs (or other specialized hardware accelerators), enable unprecedented peak performance and energy efficiency levels. Unfortunately, though, developing applications that can take full advantage of the potential of heterogeneous systems is a notoriously hard task. This work takes a step towards reducing the complexity of programming heterogeneous systems by introducing the abstraction of Heterogeneous Transactional Memory (HeTM). HeTM provides programmers with the illusion of a single memory region, shared among the CPUs and the (discrete) GPU(s) of a heterogeneous system, with support for atomic transactions. Besides introducing the abstract semantics and programming model of HeTM, we present the design and evaluation of a concrete implementation of the proposed abstraction, which we named Speculative HeTM (SHeTM). SHeTM makes use of a novel design that leverages on speculative techniques and aims at hiding the inherently large communication latency between CPUs and discrete GPUs and at minimizing inter-device synchronization overhead. SHeTM is based on a modular and extensible design that allows for easily integrating alternative TM implementations on the CPU's and GPU's sides, which allows the flexibility to adopt, on either side, the TM implementation (e.g., in hardware or software) that best fits the applications' workload and the architectural characteristics of the processing unit. We demonstrate the efficiency of the SHeTM via an extensive quantitative study based both on synthetic benchmarks and on a porting of a popular object caching system.Comment: The current work was accepted in the 28th International Conference on Parallel Architectures and Compilation Techniques (PACT'19
    • …
    corecore