444 research outputs found

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Secure key design approaches using entropy harvesting in wireless sensor network: A survey

    Get PDF
    Physical layer based security design in wireless sensor networks have gained much importance since the past decade. The various constraints associated with such networks coupled with other factors such as their deployment mainly in remote areas, nature of communication etc. are responsible for development of research works where the focus is secured key generation, extraction, and sharing. Keeping the importance of such works in mind, this survey is undertaken that provides a vivid description of the different mechanisms adopted for securely generating the key as well its randomness extraction and also sharing. This survey work not only concentrates on the more common methods, like received signal strength based but also goes on to describe other uncommon strategies such as accelerometer based. We first discuss the three fundamental steps viz. randomness extraction, key generation and sharing and their importance in physical layer based security design. We then review existing secure key generation, extraction, and sharing mechanisms and also discuss their pros and cons. In addition, we present a comprehensive comparative study of the recent advancements in secure key generation, sharing, and randomness extraction approaches on the basis of adversary, secret bit generation rate, energy efficiency etc. Finally, the survey wraps up with some promising future research directions in this area

    Low-power Secret-key Agreement over OFDM

    Get PDF
    Information-theoretic secret-key agreement is perhaps the most practically feasible mechanism that provides unconditional security at the physical layer to date. In this paper, we consider the problem of secret-key agreement by sharing randomness at low power over an orthogonal frequency division multiplexing (OFDM) link, in the presence of an eavesdropper. The low power assumption greatly simplifies the design of the randomness sharing scheme, even in a fading channel scenario. We assess the performance of the proposed system in terms of secrecy key rate and show that a practical approach to key sharing is obtained by using low-density parity check (LDPC) codes for information reconciliation. Numerical results confirm the merits of the proposed approach as a feasible and practical solution. Moreover, the outage formulation allows to implement secret-key agreement even when only statistical knowledge of the eavesdropper channel is available.Comment: 9 pages, 4 figures; this is the authors prepared version of the paper with the same name accepted for HotWiSec 2013, the Second ACM Workshop on Hot Topics on Wireless Network Security and Privacy, Budapest, Hungary 17-19 April 201

    Doctor of Philosophy

    Get PDF
    dissertationCross layer system design represents a paradigm shift that breaks the traditional layer-boundaries in a network stack to enhance a wireless network in a number of di erent ways. Existing work has used the cross layer approach to optimize a wireless network in terms of packet scheduling, error correction, multimedia quality, power consumption, selection of modulation/coding and user experience, etc. We explore the use of new cross layer opportunities to achieve secrecy and e ciency of data transmission in wireless networks. In the rst part of this dissertation, we build secret key establishment methods for private communication between wireless devices using the spatio-temporal variations of symmetric-wireless channel measurements. We evaluate our methods on a variety of wireless devices, including laptops, telosB sensor nodes, and Android smartphones, with diverse wireless capabilities. We perform extensive measurements in real-world environments and show that our methods generate high entropy secret bits at a signi cantly faster rate in comparison to existing approaches. While the rst part of this dissertation focuses on achieving secrecy in wireless networks, the second part of this dissertation examines the use of special pulse shaping lters of the lterbank multicarrier (FBMC) physical layer in reliably transmitting data packets at a very high rate. We rst analyze the mutual interference power across subcarriers used by di erent transmitters. Next, to understand the impact of FBMC beyond the physical layer, we devise a distributed and adaptive medium access control protocol that coordinates data packet tra c among the di erent nodes in the network in a best e ort manner. Using extensive simulations, we show that FBMC consistently achieves an order-of-magnitude performance improvement over orthogonal frequency division multiplexing (OFDM) in several aspects, including packet transmission delays, channel access delays, and e ective data transmission rate available to each node in static indoor settings as well as in vehicular networks
    corecore