285 research outputs found

    Image Description using Deep Neural Networks

    Get PDF
    Current research in computer vision and machine learning has demonstrated some great abilities at detecting and recognizing objects in natural images. Current state-of-the-art results in object detection, classification and localization in ImageNet Challenges have the validation accuracy for top 5 predictions for classification to be at 3.08% while similar classification experiments run by trained humans report an accuracy of 5.1%. While some people might argue that human accuracy is a function of training time it can be said with great confidence that automated classification models are at least as good as trained humans in classification problems. The ability of these models to analyze and describe complex images, however, is still an active area of research. Image description is a good starting point for imparting artificial intelligence to machines by allowing them to analyze and describe complex visual scenes. This thesis work introduces a generic end-to-end trainable Fusion-based Recurrent Multi-Modal (FRMM) architecture to address multi-modal applications. FRMM allows each input modality to be independent in terms of architecture, parameters and length of input sequences. FRMM image description models seamlessly blend convolutional neural network feature descriptors with sequential language data in a recurrent framework. In addition to introducing FRMMs, this work also analyzes the impact of varying activation functions and vocabulary size. For training and testing Flickr8k, Flickr30K and MSCOCO datasets have been used, demonstrating state-of-the-art description results

    A Survey on Knowledge Graphs: Representation, Acquisition and Applications

    Full text link
    Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review of knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed. We further explore several emerging topics, including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions

    Log signatures in machine learning

    Get PDF
    Rough path theory, originated as a branch of stochastic analysis, is an emerging tool for analysing complex sequential data in machine learning with increasing attention. This is owing to the core mathematical object of rough path theory, i.e., the signature/log-signature of a path, which has analytical and algebraic properties. This thesis aims to develop a principled and effective model for time series data based on the log-signature method and the recurrent neural network (RNN). The proposed (generalized) Logsig-RNN model can be regarded as a generalization of the RNN model, which boosts the model performance of the RNN by reducing the time dimension and summarising the local structures of sequential data via the log-signature feature. This hybrid model serves as a generic neural network for a wide range of time series applications. In this thesis, we construct the mathematical formulation for the (generalized) Logsig-RNN model, analyse its complexity and establish the universality. We validate the effectiveness of the proposed method for time series analysis in both supervised learning and generative tasks. In particular, for the skeleton human action recognition tasks, we demonstrates that by replacing the RNN module by the Logsig-RNN in state-of-the-art (SOTA) networks improves the accuracy, efficiency and robustness. In addition, our generator based on the Logsig-RNN model exhibits better performance in generating realistic-looking time series data than classical RNN generators and other baseline methods from the literature. Apart from that, another contribution of our work is to construct a novel Sig-WGAN framework to address the efficiency issue and instability training of traditional generative adversarial networks for time series generation

    Efficient machine learning: models and accelerations

    Get PDF
    One of the key enablers of the recent unprecedented success of machine learning is the adoption of very large models. Modern machine learning models typically consist of multiple cascaded layers such as deep neural networks, and at least millions to hundreds of millions of parameters (i.e., weights) for the entire model. The larger-scale model tend to enable the extraction of more complex high-level features, and therefore, lead to a significant improvement of the overall accuracy. On the other side, the layered deep structure and large model sizes also demand to increase computational capability and memory requirements. In order to achieve higher scalability, performance, and energy efficiency for deep learning systems, two orthogonal research and development trends have attracted enormous interests. The first trend is the acceleration while the second is the model compression. The underlying goal of these two trends is the high quality of the models to provides accurate predictions. In this thesis, we address these two problems and utilize different computing paradigms to solve real-life deep learning problems. To explore in these two domains, this thesis first presents the cogent confabulation network for sentence completion problem. We use Chinese language as a case study to describe our exploration of the cogent confabulation based text recognition models. The exploration and optimization of the cogent confabulation based models have been conducted through various comparisons. The optimized network offered a better accuracy performance for the sentence completion. To accelerate the sentence completion problem in a multi-processing system, we propose a parallel framework for the confabulation recall algorithm. The parallel implementation reduce runtime, improve the recall accuracy by breaking the fixed evaluation order and introducing more generalization, and maintain a balanced progress in status update among all neurons. A lexicon scheduling algorithm is presented to further improve the model performance. As deep neural networks have been proven effective to solve many real-life applications, and they are deployed on low-power devices, we then investigated the acceleration for the neural network inference using a hardware-friendly computing paradigm, stochastic computing. It is an approximate computing paradigm which requires small hardware footprint and achieves high energy efficiency. Applying this stochastic computing to deep convolutional neural networks, we design the functional hardware blocks and optimize them jointly to minimize the accuracy loss due to the approximation. The synthesis results show that the proposed design achieves the remarkable low hardware cost and power/energy consumption. Modern neural networks usually imply a huge amount of parameters which cannot be fit into embedded devices. Compression of the deep learning models together with acceleration attracts our attention. We introduce the structured matrices based neural network to address this problem. Circulant matrix is one of the structured matrices, where a matrix can be represented using a single vector, so that the matrix is compressed. We further investigate a more flexible structure based on circulant matrix, called block-circulant matrix. It partitions a matrix into several smaller blocks and makes each submatrix is circulant. The compression ratio is controllable. With the help of Fourier Transform based equivalent computation, the inference of the deep neural network can be accelerated energy efficiently on the FPGAs. We also offer the optimization for the training algorithm for block circulant matrices based neural networks to obtain a high accuracy after compression
    • …
    corecore