127 research outputs found

    Space Station Freedom data management system growth and evolution report

    Get PDF
    The Information Sciences Division at the NASA Ames Research Center has completed a 6-month study of portions of the Space Station Freedom Data Management System (DMS). This study looked at the present capabilities and future growth potential of the DMS, and the results are documented in this report. Issues have been raised that were discussed with the appropriate Johnson Space Center (JSC) management and Work Package-2 contractor organizations. Areas requiring additional study have been identified and suggestions for long-term upgrades have been proposed. This activity has allowed the Ames personnel to develop a rapport with the JSC civil service and contractor teams that does permit an independent check and balance technique for the DMS

    Rewriteable optical disk recorder development

    Get PDF
    A NASA program to develop a high performance (high rate, high capability) rewriteable optical disk recorder for spaceflight applications is presented. An expandable, adaptable system concept is proposed based on disk Drive modules and a modular Controller. Drive performance goals are 10 gigabyte capacity are up to 1.8 gigabits per second rate with concurrent I/O, synchronous data transfer, and 2 to 5 years operating life in orbit. Technology developments, design concepts, current status, and future plans are presented

    Telemetry downlink interfaces and level-zero processing

    Get PDF
    The technical areas being investigated are as follows: (1) processing of space to ground data frames; (2) parallel architecture performance studies; and (3) parallel programming techniques. Additionally, the University administrative details and the technical liaison between New Mexico State University and Goddard Space Flight Center are addressed

    Proving sequential consistency by model checking

    Get PDF
    Sequential consistency is a multiprocessor memory model of both practical and theoretical importance. Unfortunately, the general problem of verifying that a finitestate protocol implements sequential consistency is undecidable, and in practice, validating that a real-world, finitestate protocol implements sequential consistency is very time-consuming and costly. In this work, we show that for memory protocols that occur in practice, a small amount of manual effort can reduce the problem of verifying sequential consistency into a verification task that can be discharged automatically via model checking. Furthermore, we present experimental results on a substantial, directorybased cache coherence protocol, which demonstrate the practicality of our approach.

    Rate monotonic analysis for real-time systems

    Get PDF
    Rate monotonic analysis (RMA), a mathematical approach that helps ensure that a real-time system meets its performance requirements, is discussed. It does so through a collection of quantitative methods and algorithms that let engineers understand, analyze, and predict the timing behavior of their designs. An application of RMA to an air traffic control system is described. Document type: Repor

    A Feature Taxonomy and Survey of Synchronization Primitive Implementations

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNCR Corporatio
    corecore