7,765 research outputs found

    Simulating spin models on GPU

    Full text link
    Over the last couple of years it has been realized that the vast computational power of graphics processing units (GPUs) could be harvested for purposes other than the video game industry. This power, which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units on a single chip. To benefit from this setup for general computing purposes, the problems at hand need to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory accesses. In this contribution I discuss the performance potential for simulating spin models, such as the Ising model, on GPU as compared to conventional simulations on CPU.Comment: 5 pages, 4 figures, elsarticl

    Development and evaluation of a fault-tolerant multiprocessor (FTMP) computer. Volume 4: FTMP executive summary

    Get PDF
    The FTMP architecture is a high reliability computer concept modeled after a homogeneous multiprocessor architecture. Elements of the FTMP are operated in tight synchronism with one another and hardware fault-detection and fault-masking is provided which is transparent to the software. Operating system design and user software design is thus greatly simplified. Performance of the FTMP is also comparable to that of a simplex equivalent due to the efficiency of fault handling hardware. The FTMP project constructed an engineering module of the FTMP, programmed the machine and extensively tested the architecture through fault injection and other stress testing. This testing confirmed the soundness of the FTMP concepts

    Problems related to the integration of fault tolerant aircraft electronic systems

    Get PDF
    Problems related to the design of the hardware for an integrated aircraft electronic system are considered. Taxonomies of concurrent systems are reviewed and a new taxonomy is proposed. An informal methodology intended to identify feasible regions of the taxonomic design space is described. Specific tools are recommended for use in the methodology. Based on the methodology, a preliminary strawman integrated fault tolerant aircraft electronic system is proposed. Next, problems related to the programming and control of inegrated aircraft electronic systems are discussed. Issues of system resource management, including the scheduling and allocation of real time periodic tasks in a multiprocessor environment, are treated in detail. The role of software design in integrated fault tolerant aircraft electronic systems is discussed. Conclusions and recommendations for further work are included

    The FORCE: A highly portable parallel programming language

    Get PDF
    Here, it is explained why the FORCE parallel programming language is easily portable among six different shared-memory microprocessors, and how a two-level macro preprocessor makes it possible to hide low level machine dependencies and to build machine-independent high level constructs on top of them. These FORCE constructs make it possible to write portable parallel programs largely independent of the number of processes and the specific shared memory multiprocessor executing them

    C-MOS array design techniques: SUMC multiprocessor system study

    Get PDF
    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units

    On the periodic behavior of real-time schedulers on identical multiprocessor platforms

    Full text link
    This paper is proposing a general periodicity result concerning any deterministic and memoryless scheduling algorithm (including non-work-conserving algorithms), for any context, on identical multiprocessor platforms. By context we mean the hardware architecture (uniprocessor, multicore), as well as task constraints like critical sections, precedence constraints, self-suspension, etc. Since the result is based only on the releases and deadlines, it is independent from any other parameter. Note that we do not claim that the given interval is minimal, but it is an upper bound for any cycle of any feasible schedule provided by any deterministic and memoryless scheduler
    corecore