18 research outputs found

    Streaming and User Behaviour in Omnidirectional Videos

    Get PDF
    Omnidirectional videos (ODVs) have gone beyond the passive paradigm of traditional video, offering higher degrees of immersion and interaction. The revolutionary novelty of this technology is the possibility for users to interact with the surrounding environment, and to feel a sense of engagement and presence in a virtual space. Users are clearly the main driving force of immersive applications and consequentially the services need to be properly tailored to them. In this context, this chapter highlights the importance of the new role of users in ODV streaming applications, and thus the need for understanding their behaviour while navigating within ODVs. A comprehensive overview of the research efforts aimed at advancing ODV streaming systems is also presented. In particular, the state-of-the-art solutions under examination in this chapter are distinguished in terms of system-centric and user-centric streaming approaches: the former approach comes from a quite straightforward extension of well-established solutions for the 2D video pipeline while the latter one takes the benefit of understanding users’ behaviour and enable more personalised ODV streaming

    Understanding user interactivity for the next-generation immersive communication: design, optimisation, and behavioural analysis

    Get PDF
    Recent technological advances have opened the gate to a novel way to communicate remotely still feeling connected. In these immersive communications, humans are at the centre of virtual or augmented reality with a full sense of immersion and the possibility to interact with the new environment as well as other humans virtually present. These next-generation communication systems hide a huge potential that can invest in major economic sectors. However, they also posed many new technical challenges, mainly due to the new role of the final user: from merely passive to fully active in requesting and interacting with the content. Thus, we need to go beyond the traditional quality of experience research and develop user-centric solutions, in which the whole multimedia experience is tailored to the final interactive user. With this goal in mind, a better understanding of how people interact with immersive content is needed and it is the focus of this thesis. In this thesis, we study the behaviour of interactive users in immersive experiences and its impact on the next-generation multimedia systems. The thesis covers a deep literature review on immersive services and user centric solutions, before develop- ing three main research strands. First, we implement novel tools for behavioural analysis of users navigating in a 3-DoF Virtual Reality (VR) system. In detail, we study behavioural similarities among users by proposing a novel clustering algorithm. We also introduce information-theoretic metrics for quantifying similarities for the same viewer across contents. As second direction, we show the impact and advantages of taking into account user behaviour in immersive systems. Specifically, we formulate optimal user centric solutions i) from a server-side perspective and ii) a navigation aware adaptation logic for VR streaming platforms. We conclude by exploiting the aforementioned behavioural studies towards a more in- interactive immersive technology: a 6-DoF VR. Overall in this thesis, experimental results based on real navigation trajectories show key advantages of understanding any hidden patterns of user interactivity to be eventually exploited in engineering user centric solutions for immersive systems

    Data compression and transmission aspects of panoramic videos

    Get PDF
    Panoramic videos are effective means for representing static or dynamic scenes along predefined paths. They allow users to change their viewpoints interactively at points in time or space defined by the paths. High-resolution panoramic videos, while desirable, consume a significant amount of storage and bandwidth for transmission. They also make real-time decoding computationally very intensive. This paper proposes efficient data compression and transmission techniques for panoramic videos. A high-performance MPEG-2-like compression algorithm, which takes into account the random access requirements and the redundancies of panoramic videos, is proposed. The transmission aspects of panoramic videos over cable networks, local area networks (LANs), and the Internet are also discussed. In particular, an efficient advanced delivery sharing scheme (ADSS) for reducing repeated transmission and retrieval of frequently requested video segments is introduced. This protocol was verified by constructing an experimental VOD system consisting of a video server and eight Pentium 4 computers. Using the synthetic panoramic video Village at a rate of 197 kb/s and 7 f/s, nearly two-thirds of the memory access and transmission bandwidth of the video server were saved under normal network traffic.published_or_final_versio

    Towards one video encoder per individual : guided High Efficiency Video Coding

    Get PDF

    A Modular and Open-Source Framework for Virtual Reality Visualisation and Interaction in Bioimaging

    Get PDF
    Life science today involves computational analysis of a large amount and variety of data, such as volumetric data acquired by state-of-the-art microscopes, or mesh data from analysis of such data or simulations. The advent of new imaging technologies, such as lightsheet microscopy, has resulted in the users being confronted with an ever-growing amount of data, with even terabytes of imaging data created within a day. With the possibility of gentler and more high-performance imaging, the spatiotemporal complexity of the model systems or processes of interest is increasing as well. Visualisation is often the first step in making sense of this data, and a crucial part of building and debugging analysis pipelines. It is therefore important that visualisations can be quickly prototyped, as well as developed or embedded into full applications. In order to better judge spatiotemporal relationships, immersive hardware, such as Virtual or Augmented Reality (VR/AR) headsets and associated controllers are becoming invaluable tools. In this work we present scenery, a modular and extensible visualisation framework for the Java VM that can handle mesh and large volumetric data, containing multiple views, timepoints, and color channels. scenery is free and open-source software, works on all major platforms, and uses the Vulkan or OpenGL rendering APIs. We introduce scenery's main features, and discuss its use with VR/AR hardware and in distributed rendering. In addition to the visualisation framework, we present a series of case studies, where scenery can provide tangible benefit in developmental and systems biology: With Bionic Tracking, we demonstrate a new technique for tracking cells in 4D volumetric datasets via tracking eye gaze in a virtual reality headset, with the potential to speed up manual tracking tasks by an order of magnitude. We further introduce ideas to move towards virtual reality-based laser ablation and perform a user study in order to gain insight into performance, acceptance and issues when performing ablation tasks with virtual reality hardware in fast developing specimen. To tame the amount of data originating from state-of-the-art volumetric microscopes, we present ideas how to render the highly-efficient Adaptive Particle Representation, and finally, we present sciview, an ImageJ2/Fiji plugin making the features of scenery available to a wider audience.:Abstract Foreword and Acknowledgements Overview and Contributions Part 1 - Introduction 1 Fluorescence Microscopy 2 Introduction to Visual Processing 3 A Short Introduction to Cross Reality 4 Eye Tracking and Gaze-based Interaction Part 2 - VR and AR for System Biology 5 scenery — VR/AR for Systems Biology 6 Rendering 7 Input Handling and Integration of External Hardware 8 Distributed Rendering 9 Miscellaneous Subsystems 10 Future Development Directions Part III - Case Studies C A S E S T U D I E S 11 Bionic Tracking: Using Eye Tracking for Cell Tracking 12 Towards Interactive Virtual Reality Laser Ablation 13 Rendering the Adaptive Particle Representation 14 sciview — Integrating scenery into ImageJ2 & Fiji Part IV - Conclusion 15 Conclusions and Outlook Backmatter & Appendices A Questionnaire for VR Ablation User Study B Full Correlations in VR Ablation Questionnaire C Questionnaire for Bionic Tracking User Study List of Tables List of Figures Bibliography Selbstständigkeitserklärun

    Design methodology for 360-degree immersive video applications

    Get PDF
    360-degree immersive video applications for Head Mounted Display (HMD) devices offer great potential in providing engaging forms of experiential media solutions. Design challenges emerge though by this new kind of immersive media due to the 2D form of resources used for their construction, the lack of depth, the limited interaction, and the need to address the sense of presence. In addition, the use of Virtual Reality (VR) is related to cybersickness effects imposing further implications in moderate motion design tasks. This research project provides a systematic methodological approach in addressing those challenges and implications in 360-degree immersive video applications design. By studying and analysing methods and techniques efficiently used in the area of VR and Games design, a rigorous methodological design process is proposed. This process is introduced by the specification of the iVID (Immersive Video Interaction Design) framework. The efficiency of the iVID framework and the design methods and techniques it proposes is evaluated through two phases of user studies. Two different 360-degree immersive video prototypes have been created to serve the studies purposes. The analysis of the purposes of the studies ed to the definition of a set of design guidelines to be followed along with the iVID framework for designing 360-degree video-based experiences that are engaging and immersive

    Ray Tracing Gems

    Get PDF
    This book is a must-have for anyone serious about rendering in real time. With the announcement of new ray tracing APIs and hardware to support them, developers can easily create real-time applications with ray tracing as a core component. As ray tracing on the GPU becomes faster, it will play a more central role in real-time rendering. Ray Tracing Gems provides key building blocks for developers of games, architectural applications, visualizations, and more. Experts in rendering share their knowledge by explaining everything from nitty-gritty techniques that will improve any ray tracer to mastery of the new capabilities of current and future hardware. What you'll learn: The latest ray tracing techniques for developing real-time applications in multiple domains Guidance, advice, and best practices for rendering applications with Microsoft DirectX Raytracing (DXR) How to implement high-performance graphics for interactive visualizations, games, simulations, and more Who this book is for: Developers who are looking to leverage the latest APIs and GPU technology for real-time rendering and ray tracing Students looking to learn about best practices in these areas Enthusiasts who want to understand and experiment with their new GPU

    Sonic Interactions in Virtual Environments

    Get PDF
    This open access book tackles the design of 3D spatial interactions in an audio-centered and audio-first perspective, providing the fundamental notions related to the creation and evaluation of immersive sonic experiences. The key elements that enhance the sensation of place in a virtual environment (VE) are: Immersive audio: the computational aspects of the acoustical-space properties of Virutal Reality (VR) technologies Sonic interaction: the human-computer interplay through auditory feedback in VE VR systems: naturally support multimodal integration, impacting different application domains Sonic Interactions in Virtual Environments will feature state-of-the-art research on real-time auralization, sonic interaction design in VR, quality of the experience in multimodal scenarios, and applications. Contributors and editors include interdisciplinary experts from the fields of computer science, engineering, acoustics, psychology, design, humanities, and beyond. Their mission is to shape an emerging new field of study at the intersection of sonic interaction design and immersive media, embracing an archipelago of existing research spread in different audio communities and to increase among the VR communities, researchers, and practitioners, the awareness of the importance of sonic elements when designing immersive environments
    corecore