1,782 research outputs found

    Speech-Gesture Mapping and Engagement Evaluation in Human Robot Interaction

    Full text link
    A robot needs contextual awareness, effective speech production and complementing non-verbal gestures for successful communication in society. In this paper, we present our end-to-end system that tries to enhance the effectiveness of non-verbal gestures. For achieving this, we identified prominently used gestures in performances by TED speakers and mapped them to their corresponding speech context and modulated speech based upon the attention of the listener. The proposed method utilized Convolutional Pose Machine [4] to detect the human gesture. Dominant gestures of TED speakers were used for learning the gesture-to-speech mapping. The speeches by them were used for training the model. We also evaluated the engagement of the robot with people by conducting a social survey. The effectiveness of the performance was monitored by the robot and it self-improvised its speech pattern on the basis of the attention level of the audience, which was calculated using visual feedback from the camera. The effectiveness of interaction as well as the decisions made during improvisation was further evaluated based on the head-pose detection and interaction survey.Comment: 8 pages, 9 figures, Under review in IRC 201

    Measuring the Scale Outcomes of Curriculum Materials

    Get PDF

    Integrating Socially Assistive Robots into Language Tutoring Systems. A Computational Model for Scaffolding Young Children's Foreign Language Learning

    Get PDF
    Schodde T. Integrating Socially Assistive Robots into Language Tutoring Systems. A Computational Model for Scaffolding Young Children's Foreign Language Learning. Bielefeld: Universität Bielefeld; 2019.Language education is a global and important issue nowadays, especially for young children since their later educational success build on it. But learning a language is a complex task that is known to work best in a social interaction and, thus, personalized sessions tailored to the individual knowledge and needs of each child are needed to allow for teachers to optimally support them. However, this is often costly regarding time and personnel resources, which is one reasons why research of the past decades investigated the benefits of Intelligent Tutoring Systems (ITSs). But although ITSs can help out to provide individualized one-on-one tutoring interactions, they often lack of social support. This dissertation provides new insights on how a Socially Assistive Robot (SAR) can be employed as a part of an ITS, building a so-called "Socially Assistive Robot Tutoring System" (SARTS), to provide social support as well as to personalize and scaffold foreign language learning for young children in the age of 4-6 years. As basis for the SARTS a novel approach called A-BKT is presented, which allows to autonomously adapt the tutoring interaction to the children's individual knowledge and needs. The corresponding evaluation studies show that the A-BKT model can significantly increase student's learning gains and maintain a higher engagement during the tutoring interaction. This is partly due to the models ability to simulate the influences of potential actions on all dimensions of the learning interaction, i.e., the children's learning progress (cognitive learning), affective state, engagement (affective learning) and believed knowledge acquisition (perceived learning). This is particularly important since all dimensions are strongly interconnected and influence each other, for example, a low engagement can cause bad learning results although the learner is already quite proficient. However, this also yields the necessity to not only focus on the learner's cognitive learning but to equally support all dimensions with appropriate scaffolding actions. Therefore an extensive literature review, observational video recordings and expert interviews were conducted to find appropriate actions applicable for a SARTS to support each learning dimension. The subsequent evaluation study confirms that the developed scaffolding techniques are able to support young children’s learning process either by re-engaging them or by providing transparency to support their perception of the learning process and to reduce uncertainty. Finally, based on educated guesses derived from the previous studies, all identified strategies are integrated into the A-BKT model. The resulting model called ProTM is evaluated by simulating different learner types, which highlight its ability to autonomously adapt the tutoring interactions based on the learner's answers and provided dis-engagement cues. Summarized, this dissertation yields new insights into the field of SARTS to provide personalized foreign language learning interactions for young children, while also rising new important questions to be studied in the future

    Producing Acoustic-Prosodic Entrainment in a Robotic Learning Companion to Build Learner Rapport

    Get PDF
    abstract: With advances in automatic speech recognition, spoken dialogue systems are assuming increasingly social roles. There is a growing need for these systems to be socially responsive, capable of building rapport with users. In human-human interactions, rapport is critical to patient-doctor communication, conflict resolution, educational interactions, and social engagement. Rapport between people promotes successful collaboration, motivation, and task success. Dialogue systems which can build rapport with their user may produce similar effects, personalizing interactions to create better outcomes. This dissertation focuses on how dialogue systems can build rapport utilizing acoustic-prosodic entrainment. Acoustic-prosodic entrainment occurs when individuals adapt their acoustic-prosodic features of speech, such as tone of voice or loudness, to one another over the course of a conversation. Correlated with liking and task success, a dialogue system which entrains may enhance rapport. Entrainment, however, is very challenging to model. People entrain on different features in many ways and how to design entrainment to build rapport is unclear. The first goal of this dissertation is to explore how acoustic-prosodic entrainment can be modeled to build rapport. Towards this goal, this work presents a series of studies comparing, evaluating, and iterating on the design of entrainment, motivated and informed by human-human dialogue. These models of entrainment are implemented in the dialogue system of a robotic learning companion. Learning companions are educational agents that engage students socially to increase motivation and facilitate learning. As a learning companion’s ability to be socially responsive increases, so do vital learning outcomes. A second goal of this dissertation is to explore the effects of entrainment on concrete outcomes such as learning in interactions with robotic learning companions. This dissertation results in contributions both technical and theoretical. Technical contributions include a robust and modular dialogue system capable of producing prosodic entrainment and other socially-responsive behavior. One of the first systems of its kind, the results demonstrate that an entraining, social learning companion can positively build rapport and increase learning. This dissertation provides support for exploring phenomena like entrainment to enhance factors such as rapport and learning and provides a platform with which to explore these phenomena in future work.Dissertation/ThesisDoctoral Dissertation Computer Science 201
    • …
    corecore