81 research outputs found

    Shapelet Transforms for Univariate and Multivariate Time Series Classification

    Get PDF
    Time Series Classification (TSC) is a growing field of machine learning research. One particular algorithm from the TSC literature is the Shapelet Transform (ST). Shapelets are a phase independent subsequences that are extracted from times series to form discriminatory features. It has been shown that using the shapelets to transform the datasets into a new space can improve performance. One of the major problems with ST, is that the algorithm is O(n2m4), where n is the number of time series and m is the length of the series. As a problem increases in sizes, or additional dimensions are added, the algorithm quickly becomes computationally infeasible. The research question addressed is whether the shapelet transform be improved in terms of accuracy and speed. Making algorithmic improvements to shapelets will enable the development of multivariate shapelet algorithms that can attempt to solve much larger problems in realistic time frames. In support of this thesis a new distance early abandon method is proposed. A class balancing algorithm is implemented, which uses a one vs. all multi class information gain that enables heuristics which were developed for two class problems. To support these improvements a large scale analysis of the best shapelet algorithms is conducted as part of a larger experimental evaluation. ST is proven to be one of the most accurate algorithms in TSC on the UCR-UEA datasets. Contract classification is proposed for shapelets, where a fixed run time is set, and the number of shapelets is bounded. Four search algorithms are evaluated with fixed run times of one hour and one day, three of which are not significantly worse than a full enumeration. Finally, three multivariate shapelet algorithms are developed and compared to benchmark results and multivariate dynamic time warping

    Feature-based time-series analysis

    Full text link
    This work presents an introduction to feature-based time-series analysis. The time series as a data type is first described, along with an overview of the interdisciplinary time-series analysis literature. I then summarize the range of feature-based representations for time series that have been developed to aid interpretable insights into time-series structure. Particular emphasis is given to emerging research that facilitates wide comparison of feature-based representations that allow us to understand the properties of a time-series dataset that make it suited to a particular feature-based representation or analysis algorithm. The future of time-series analysis is likely to embrace approaches that exploit machine learning methods to partially automate human learning to aid understanding of the complex dynamical patterns in the time series we measure from the world.Comment: 28 pages, 9 figure

    Comparative Study of Machine Learning Models on Solar Flare Prediction Problem

    Get PDF
    Solar flare events are explosions of energy and radiation from the Sun’s surface. These events occur due to the tangling and twisting of magnetic fields associated with sunspots. When Coronal Mass ejections accompany solar flares, solar storms could travel towards earth at very high speeds, disrupting all earthly technologies and posing radiation hazards to astronauts. For this reason, the prediction of solar flares has become a crucial aspect of forecasting space weather. Our thesis utilized the time-series data consisting of active solar region magnetic field parameters acquired from SDO that span more than eight years. The classification models take AR data from an observation period of 12 hours as input to predict the occurrence of flare in next 24 hours. We performed preprocessing and feature selection to find optimal feature space consisting of 28 active region parameters that made our multivariate time series dataset (MVTS). For the first time, we modeled the flare prediction task as a 4-class problem and explored a comprehensive set of machine learning models to identify the most suitable model. This research achieved a state-of-the-art true skill statistic (TSS) of 0.92 with a 99.9% recall of X-/M- class flares on our time series forest model. This was accomplished with the augmented dataset in which the minority class is over-sampled using synthetic samples generated by SMOTE and the majority classes are randomly under-sampled. This work has established a robust dataset and baseline models for future studies in this task, including experiments on remedies to tackle the class imbalance problem such as weighted cost functions and data augmentation. Also the time series classifiers implemented will enable shapelets mining that can provide interpreting ability to domain experts

    Generalised Interpretable Shapelets for Irregular Time Series

    Get PDF
    The shapelet transform is a form of feature extraction for time series, in which a time series is described by its similarity to each of a collection of `shapelets'. However it has previously suffered from a number of limitations, such as being limited to regularly-spaced fully-observed time series, and having to choose between efficient training and interpretability. Here, we extend the method to continuous time, and in doing so handle the general case of irregularly-sampled partially-observed multivariate time series. Furthermore, we show that a simple regularisation penalty may be used to train efficiently without sacrificing interpretability. The continuous-time formulation additionally allows for learning the length of each shapelet (previously a discrete object) in a differentiable manner. Finally, we demonstrate that the measure of similarity between time series may be generalised to a learnt pseudometric. We validate our method by demonstrating its performance and interpretability on several datasets; for example we discover (purely from data) that the digits 5 and 6 may be distinguished by the chirality of their bottom loop, and that a kind of spectral gap exists in spoken audio classification

    Convolutional and Deep Learning based techniques for Time Series Ordinal Classification

    Full text link
    Time Series Classification (TSC) covers the supervised learning problem where input data is provided in the form of series of values observed through repeated measurements over time, and whose objective is to predict the category to which they belong. When the class values are ordinal, classifiers that take this into account can perform better than nominal classifiers. Time Series Ordinal Classification (TSOC) is the field covering this gap, yet unexplored in the literature. There are a wide range of time series problems showing an ordered label structure, and TSC techniques that ignore the order relationship discard useful information. Hence, this paper presents a first benchmarking of TSOC methodologies, exploiting the ordering of the target labels to boost the performance of current TSC state-of-the-art. Both convolutional- and deep learning-based methodologies (among the best performing alternatives for nominal TSC) are adapted for TSOC. For the experiments, a selection of 18 ordinal problems from two well-known archives has been made. In this way, this paper contributes to the establishment of the state-of-the-art in TSOC. The results obtained by ordinal versions are found to be significantly better than current nominal TSC techniques in terms of ordinal performance metrics, outlining the importance of considering the ordering of the labels when dealing with this kind of problems.Comment: 13 pages, 9 figures, 3 table

    Time Series Classification Using Images

    Get PDF
    This work is a contribution to the field of time series classification. We propose a novel method that transforms time series into multi-channel images, which are then classified using Convolutional Neural Networks as an at-hand classifier. We present different variants of the proposed method. Time series with different characteristics are studied in this paper: univariate, multivariate, and varying lengths. Several selected methods of time-series-to-image transformation are considered, taking into account the original series values, value changes (first differentials), and changes in value changes (second differentials). In the paper, we present an empirical study demonstrating the quality of time series classification using the proposed approach
    • …
    corecore