28,142 research outputs found

    Mass Displacement Networks

    Full text link
    Despite the large improvements in performance attained by using deep learning in computer vision, one can often further improve results with some additional post-processing that exploits the geometric nature of the underlying task. This commonly involves displacing the posterior distribution of a CNN in a way that makes it more appropriate for the task at hand, e.g. better aligned with local image features, or more compact. In this work we integrate this geometric post-processing within a deep architecture, introducing a differentiable and probabilistically sound counterpart to the common geometric voting technique used for evidence accumulation in vision. We refer to the resulting neural models as Mass Displacement Networks (MDNs), and apply them to human pose estimation in two distinct setups: (a) landmark localization, where we collapse a distribution to a point, allowing for precise localization of body keypoints and (b) communication across body parts, where we transfer evidence from one part to the other, allowing for a globally consistent pose estimate. We evaluate on large-scale pose estimation benchmarks, such as MPII Human Pose and COCO datasets, and report systematic improvements when compared to strong baselines.Comment: 12 pages, 4 figure

    Mapping cognitive ontologies to and from the brain

    Get PDF
    Imaging neuroscience links brain activation maps to behavior and cognition via correlational studies. Due to the nature of the individual experiments, based on eliciting neural response from a small number of stimuli, this link is incomplete, and unidirectional from the causal point of view. To come to conclusions on the function implied by the activation of brain regions, it is necessary to combine a wide exploration of the various brain functions and some inversion of the statistical inference. Here we introduce a methodology for accumulating knowledge towards a bidirectional link between observed brain activity and the corresponding function. We rely on a large corpus of imaging studies and a predictive engine. Technically, the challenges are to find commonality between the studies without denaturing the richness of the corpus. The key elements that we contribute are labeling the tasks performed with a cognitive ontology, and modeling the long tail of rare paradigms in the corpus. To our knowledge, our approach is the first demonstration of predicting the cognitive content of completely new brain images. To that end, we propose a method that predicts the experimental paradigms across different studies.Comment: NIPS (Neural Information Processing Systems), United States (2013

    How active perception and attractor dynamics shape perceptual categorization: A computational model

    Get PDF
    We propose a computational model of perceptual categorization that fuses elements of grounded and sensorimotor theories of cognition with dynamic models of decision-making. We assume that category information consists in anticipated patterns of agent–environment interactions that can be elicited through overt or covert (simulated) eye movements, object manipulation, etc. This information is firstly encoded when category information is acquired, and then re-enacted during perceptual categorization. The perceptual categorization consists in a dynamic competition between attractors that encode the sensorimotor patterns typical of each category; action prediction success counts as ‘‘evidence’’ for a given category and contributes to falling into the corresponding attractor. The evidence accumulation process is guided by an active perception loop, and the active exploration of objects (e.g., visual exploration) aims at eliciting expected sensorimotor patterns that count as evidence for the object category. We present a computational model incorporating these elements and describing action prediction, active perception, and attractor dynamics as key elements of perceptual categorizations. We test the model in three simulated perceptual categorization tasks, and we discuss its relevance for grounded and sensorimotor theories of cognition.Peer reviewe

    An interoceptive predictive coding model of conscious presence

    Get PDF
    We describe a theoretical model of the neurocognitive mechanisms underlying conscious presence and its disturbances. The model is based on interoceptive prediction error and is informed by predictive models of agency, general models of hierarchical predictive coding and dopaminergic signaling in cortex, the role of the anterior insular cortex (AIC) in interoception and emotion, and cognitive neuroscience evidence from studies of virtual reality and of psychiatric disorders of presence, specifically depersonalization/derealization disorder. The model associates presence with successful suppression by top-down predictions of informative interoceptive signals evoked by autonomic control signals and, indirectly, by visceral responses to afferent sensory signals. The model connects presence to agency by allowing that predicted interoceptive signals will depend on whether afferent sensory signals are determined, by a parallel predictive-coding mechanism, to be self-generated or externally caused. Anatomically, we identify the AIC as the likely locus of key neural comparator mechanisms. Our model integrates a broad range of previously disparate evidence, makes predictions for conjoint manipulations of agency and presence, offers a new view of emotion as interoceptive inference, and represents a step toward a mechanistic account of a fundamental phenomenological property of consciousness

    A role for recurrent processing in object completion: neurophysiological, psychophysical and computational"evidence

    Get PDF
    Recognition of objects from partial information presents a significant challenge for theories of vision because it requires spatial integration and extrapolation from prior knowledge. We combined neurophysiological recordings in human cortex with psychophysical measurements and computational modeling to investigate the mechanisms involved in object completion. We recorded intracranial field potentials from 1,699 electrodes in 18 epilepsy patients to measure the timing and selectivity of responses along human visual cortex to whole and partial objects. Responses along the ventral visual stream remained selective despite showing only 9-25% of the object. However, these visually selective signals emerged ~100 ms later for partial versus whole objects. The processing delays were particularly pronounced in higher visual areas within the ventral stream, suggesting the involvement of additional recurrent processing. In separate psychophysics experiments, disrupting this recurrent computation with a backward mask at ~75ms significantly impaired recognition of partial, but not whole, objects. Additionally, computational modeling shows that the performance of a purely bottom-up architecture is impaired by heavy occlusion and that this effect can be partially rescued via the incorporation of top-down connections. These results provide spatiotemporal constraints on theories of object recognition that involve recurrent processing to recognize objects from partial information
    corecore