2,879 research outputs found

    Speaker-independent emotion recognition exploiting a psychologically-inspired binary cascade classification schema

    No full text
    In this paper, a psychologically-inspired binary cascade classification schema is proposed for speech emotion recognition. Performance is enhanced because commonly confused pairs of emotions are distinguishable from one another. Extracted features are related to statistics of pitch, formants, and energy contours, as well as spectrum, cepstrum, perceptual and temporal features, autocorrelation, MPEG-7 descriptors, Fujisakis model parameters, voice quality, jitter, and shimmer. Selected features are fed as input to K nearest neighborhood classifier and to support vector machines. Two kernels are tested for the latter: Linear and Gaussian radial basis function. The recently proposed speaker-independent experimental protocol is tested on the Berlin emotional speech database for each gender separately. The best emotion recognition accuracy, achieved by support vector machines with linear kernel, equals 87.7%, outperforming state-of-the-art approaches. Statistical analysis is first carried out with respect to the classifiers error rates and then to evaluate the information expressed by the classifiers confusion matrices. © Springer Science+Business Media, LLC 2011

    A system for recognizing human emotions based on speech analysis and facial feature extraction: applications to Human-Robot Interaction

    Get PDF
    With the advance in Artificial Intelligence, humanoid robots start to interact with ordinary people based on the growing understanding of psychological processes. Accumulating evidences in Human Robot Interaction (HRI) suggest that researches are focusing on making an emotional communication between human and robot for creating a social perception, cognition, desired interaction and sensation. Furthermore, robots need to receive human emotion and optimize their behavior to help and interact with a human being in various environments. The most natural way to recognize basic emotions is extracting sets of features from human speech, facial expression and body gesture. A system for recognition of emotions based on speech analysis and facial features extraction can have interesting applications in Human-Robot Interaction. Thus, the Human-Robot Interaction ontology explains how the knowledge of these fundamental sciences is applied in physics (sound analyses), mathematics (face detection and perception), philosophy theory (behavior) and robotic science context. In this project, we carry out a study to recognize basic emotions (sadness, surprise, happiness, anger, fear and disgust). Also, we propose a methodology and a software program for classification of emotions based on speech analysis and facial features extraction. The speech analysis phase attempted to investigate the appropriateness of using acoustic (pitch value, pitch peak, pitch range, intensity and formant), phonetic (speech rate) properties of emotive speech with the freeware program PRAAT, and consists of generating and analyzing a graph of speech signals. The proposed architecture investigated the appropriateness of analyzing emotive speech with the minimal use of signal processing algorithms. 30 participants to the experiment had to repeat five sentences in English (with durations typically between 0.40 s and 2.5 s) in order to extract data relative to pitch (value, range and peak) and rising-falling intonation. Pitch alignments (peak, value and range) have been evaluated and the results have been compared with intensity and speech rate. The facial feature extraction phase uses the mathematical formulation (B\ue9zier curves) and the geometric analysis of the facial image, based on measurements of a set of Action Units (AUs) for classifying the emotion. The proposed technique consists of three steps: (i) detecting the facial region within the image, (ii) extracting and classifying the facial features, (iii) recognizing the emotion. Then, the new data have been merged with reference data in order to recognize the basic emotion. Finally, we combined the two proposed algorithms (speech analysis and facial expression), in order to design a hybrid technique for emotion recognition. Such technique have been implemented in a software program, which can be employed in Human-Robot Interaction. The efficiency of the methodology was evaluated by experimental tests on 30 individuals (15 female and 15 male, 20 to 48 years old) form different ethnic groups, namely: (i) Ten adult European, (ii) Ten Asian (Middle East) adult and (iii) Ten adult American. Eventually, the proposed technique made possible to recognize the basic emotion in most of the cases

    Recognition of Emotion from Speech: A Review

    Get PDF

    Analyzing Prosody with Legendre Polynomial Coefficients

    Full text link
    This investigation demonstrates the effectiveness of Legendre polynomial coefficients representing prosodic contours within the context of two different tasks: nativeness classification and sarcasm detection. By making use of accurate representations of prosodic contours to answer fundamental linguistic questions, we contribute significantly to the body of research focused on analyzing prosody in linguistics as well as modeling prosody for machine learning tasks. Using Legendre polynomial coefficient representations of prosodic contours, we answer prosodic questions about differences in prosody between native English speakers and non-native English speakers whose first language is Mandarin. We also learn more about prosodic qualities of sarcastic speech. We additionally perform machine learning classification for both tasks, (achieving an accuracy of 72.3% for nativeness classification, and achieving 81.57% for sarcasm detection). We recommend that linguists looking to analyze prosodic contours make use of Legendre polynomial coefficients modeling; the accuracy and quality of the resulting prosodic contour representations makes them highly interpretable for linguistic analysis

    Models and analysis of vocal emissions for biomedical applications: 5th International Workshop: December 13-15, 2007, Firenze, Italy

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies. The Workshop has the sponsorship of: Ente Cassa Risparmio di Firenze, COST Action 2103, Biomedical Signal Processing and Control Journal (Elsevier Eds.), IEEE Biomedical Engineering Soc. Special Issues of International Journals have been, and will be, published, collecting selected papers from the conference

    Automatic analysis of speech F0 contour for the characterization of mood changes in bipolar patients

    Get PDF
    da inserireBipolar disorders are characterized by a mood swing, ranging from mania to depression. A system that could monitor and eventually predict these changes would be useful to improve therapy and avoid dangerous events. Speech might convey relevant information about subjects' mood and there is a growing interest to study its changes in presence of mood disorders. In this work we present an automatic method to characterize fundamental frequency (F0) dynamics in voiced part of syllables. The method performs a segmentation of voiced sounds from running speech samples and estimates two categories of features. The first category is borrowed from Taylor's Tilt intonational model. However, the meaning of the proposed features is different from the meaning of Taylor's ones since the former are estimated from all voiced segments without performing any analysis of intonation. A second category of features takes into account the speed of change of F0. In this work, the proposed features are first estimated from an emotional speech database. Then, an analysis on speech samples acquired from eleven psychiatric patients experiencing different mood states, and eighteen healthy control subjects is introduced. Subjects had to perform a text reading task and a picture commenting task. The results of the analysis on the emotional speech database indicate that the proposed features can discriminate between high and low arousal emotions. This was verified both at single subject and group level. An intra-subject analysis was performed on bipolar patients and it highlighted significant changes of the features with different mood states, although this was not observed for all the subjects. The directions of the changes estimated for different patients experiencing the same mood swing, were not coherent and were task-dependent. Interestingly, a single-subject analysis performed on healthy controls and on bipolar patients recorded twice with the same mood label, resulted in a very small number of significant differences. In particular a very good specificity was highlighted for the Taylor-inspired features and for a subset of the second category of features, thus strengthening the significance of the results obtained with patients. Even if the number of enrolled patients is small, this work suggests that the proposed features might give a relevant contribution to the demanding research field of speech-based mood classifiers. Moreover, the results here presented indicate that a model of speech changes in bipolar patients might be subject-specific and that a richer characterization of subject status could be necessary to explain the observed variability
    corecore