17,615 research outputs found

    The role of electronsensory signals on the locomotor performance of the weakly electric fish apteronotus albifrons

    Get PDF
    Animal locomotion performance responds to different ecological factors that shape relevant aspects of behavior. Conspecific signals is one of these factors and operates in a wide range of contexts. In schooling fish, coordinated movement is based on visual or mechanical cues and signals. In contrast, most gymnotiforms and mormyriforms are nocturnal or live in dark waters and use electric signals for social communication. However, the effect of conspecific electric signals on locomotion and group movement is largely unknown. Apteronotus albifrons is a well-known model in neuroethological studies of signal processing and locomotion control that relies mostly on visual inputs but can switch to electric sense in low illumination levels to navigate and interact with the environment. Conspecific electric signals might be sufficient to produce changes in locomotor behavior that reflect basic rules of group movement interactions (attraction, repulsion or coordination). To test this hypothesis, recordings of locomotor behavior under two simple were compared using two experimental conditions: single and pairs of weakly electric fish

    The implications of embodiment for behavior and cognition: animal and robotic case studies

    Full text link
    In this paper, we will argue that if we want to understand the function of the brain (or the control in the case of robots), we must understand how the brain is embedded into the physical system, and how the organism interacts with the real world. While embodiment has often been used in its trivial meaning, i.e. 'intelligence requires a body', the concept has deeper and more important implications, concerned with the relation between physical and information (neural, control) processes. A number of case studies are presented to illustrate the concept. These involve animals and robots and are concentrated around locomotion, grasping, and visual perception. A theoretical scheme that can be used to embed the diverse case studies will be presented. Finally, we will establish a link between the low-level sensory-motor processes and cognition. We will present an embodied view on categorization, and propose the concepts of 'body schema' and 'forward models' as a natural extension of the embodied approach toward first representations.Comment: Book chapter in W. Tschacher & C. Bergomi, ed., 'The Implications of Embodiment: Cognition and Communication', Exeter: Imprint Academic, pp. 31-5

    A Proposal for a Multi-Drive Heterogeneous Modular Pipe- Inspection Micro-Robot

    Full text link
    This paper presents the architecture used to develop a micro-robot for narrow pipes inspection. Both the electromechanical design and the control scheme will be described. In pipe environments it is very useful to have a method to retrieve information of the state of the inside part of the pipes in order to detect damages, breaks and holes. Due to the di_erent types of pipes that exists, a modular approach with di_erent types of modules has been chosen in order to be able to adapt to the shape of the pipe and to chose the most appropriate gait. The micro-robot has been designed for narrow pipes, a _eld in which there are not many prototypes. The robot incorporates a camera module for visual inspection and several drive modules for locomotion and turn (helicoidal, inchworm, two degrees of freedom rotation). The control scheme is based on semi-distributed behavior control and is also described. A simulation environment is also presented for prototypes testing

    Chaotic exploration and learning of locomotion behaviours

    Get PDF
    We present a general and fully dynamic neural system, which exploits intrinsic chaotic dynamics, for the real-time goal-directed exploration and learning of the possible locomotion patterns of an articulated robot of an arbitrary morphology in an unknown environment. The controller is modeled as a network of neural oscillators that are initially coupled only through physical embodiment, and goal-directed exploration of coordinated motor patterns is achieved by chaotic search using adaptive bifurcation. The phase space of the indirectly coupled neural-body-environment system contains multiple transient or permanent self-organized dynamics, each of which is a candidate for a locomotion behavior. The adaptive bifurcation enables the system orbit to wander through various phase-coordinated states, using its intrinsic chaotic dynamics as a driving force, and stabilizes on to one of the states matching the given goal criteria. In order to improve the sustainability of useful transient patterns, sensory homeostasis has been introduced, which results in an increased diversity of motor outputs, thus achieving multiscale exploration. A rhythmic pattern discovered by this process is memorized and sustained by changing the wiring between initially disconnected oscillators using an adaptive synchronization method. Our results show that the novel neurorobotic system is able to create and learn multiple locomotion behaviors for a wide range of body configurations and physical environments and can readapt in realtime after sustaining damage

    Evolved embodied phase coordination enables robust quadruped robot locomotion

    Full text link
    Overcoming robotics challenges in the real world requires resilient control systems capable of handling a multitude of environments and unforeseen events. Evolutionary optimization using simulations is a promising way to automatically design such control systems, however, if the disparity between simulation and the real world becomes too large, the optimization process may result in dysfunctional real-world behaviors. In this paper, we address this challenge by considering embodied phase coordination in the evolutionary optimization of a quadruped robot controller based on central pattern generators. With this method, leg phases, and indirectly also inter-leg coordination, are influenced by sensor feedback.By comparing two very similar control systems we gain insight into how the sensory feedback approach affects the evolved parameters of the control system, and how the performances differs in simulation, in transferal to the real world, and to different real-world environments. We show that evolution enables the design of a control system with embodied phase coordination which is more complex than previously seen approaches, and that this system is capable of controlling a real-world multi-jointed quadruped robot.The approach reduces the performance discrepancy between simulation and the real world, and displays robustness towards new environments.Comment: 9 page

    Respiratory, postural and spatio-kinetic motor stabilization, internal models, top-down timed motor coordination and expanded cerebello-cerebral circuitry: a review

    Get PDF
    Human dexterity, bipedality, and song/speech vocalization in Homo are reviewed within a motor evolution perspective in regard to 

(i) brain expansion in cerebello-cerebral circuitry, 
(ii) enhanced predictive internal modeling of body kinematics, body kinetics and action organization, 
(iii) motor mastery due to prolonged practice, 
(iv) task-determined top-down, and accurately timed feedforward motor adjustment of multiple-body/artifact elements, and 
(v) reduction in automatic preflex/spinal reflex mechanisms that would otherwise restrict such top-down processes. 

Dual-task interference and developmental neuroimaging research argues that such internal modeling based motor capabilities are concomitant with the evolution of 
(vi) enhanced attentional, executive function and other high-level cognitive processes, and that 
(vii) these provide dexterity, bipedality and vocalization with effector nonspecific neural resources. 

The possibility is also raised that such neural resources could 
(viii) underlie human internal model based nonmotor cognitions. 
&#xa

    Keeping Safe : Intra-individual Consistency in Obstacle Avoidance Behaviour Across Grasping and Locomotion Tasks

    Get PDF
    The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Jutta Billino was supported by grants from the German Research Foundation, Collaborative Research Centre SFB/TRR 135: Cardinal Mechanisms of Perception.Peer reviewedPublisher PD
    • …
    corecore