4,700 research outputs found

    Principles of generalization for sensorimotor cerebellar learning

    Get PDF

    Principles of generalization for sensorimotor cerebellar learning

    Get PDF

    Une méthode de mesure du mouvement humain pour la programmation par démonstration

    Full text link
    Programming by demonstration (PbD) is an intuitive approach to impart a task to a robot from one or several demonstrations by the human teacher. The acquisition of the demonstrations involves the solution of the correspondence problem when the teacher and the learner differ in sensing and actuation. Kinesthetic guidance is widely used to perform demonstrations. With such a method, the robot is manipulated by the teacher and the demonstrations are recorded by the robot's encoders. In this way, the correspondence problem is trivial but the teacher dexterity is afflicted which may impact the PbD process. Methods that are more practical for the teacher usually require the identification of some mappings to solve the correspondence problem. The demonstration acquisition method is based on a compromise between the difficulty of identifying these mappings, the level of accuracy of the recorded elements and the user-friendliness and convenience for the teacher. This thesis proposes an inertial human motion tracking method based on inertial measurement units (IMUs) for PbD for pick-and-place tasks. Compared to kinesthetic guidance, IMUs are convenient and easy to use but can present a limited accuracy. Their potential for PbD applications is investigated. To estimate the trajectory of the teacher's hand, 3 IMUs are placed on her/his arm segments (arm, forearm and hand) to estimate their orientations. A specific method is proposed to partially compensate the well-known drift of the sensor orientation estimation around the gravity direction by exploiting the particular configuration of the demonstration. This method, called heading reset, is based on the assumption that the sensor passes through its original heading with stationary phases several times during the demonstration. The heading reset is implemented in an integration and vector observation algorithm. Several experiments illustrate the advantages of this heading reset. A comprehensive inertial human hand motion tracking (IHMT) method for PbD is then developed. It includes an initialization procedure to estimate the orientation of each sensor with respect to the human arm segment and the initial orientation of the sensor with respect to the teacher attached frame. The procedure involves a rotation and a static position of the extended arm. The measurement system is thus robust with respect to the positioning of the sensors on the segments. A procedure for estimating the position of the human teacher relative to the robot and a calibration procedure for the parameters of the method are also proposed. At the end, the error of the human hand trajectory is measured experimentally and is found in an interval between 28.528.5 mm and 61.861.8 mm. The mappings to solve the correspondence problem are identified. Unfortunately, the observed level of accuracy of this IHMT method is not sufficient for a PbD process. In order to reach the necessary level of accuracy, a method is proposed to correct the hand trajectory obtained by IHMT using vision data. A vision system presents a certain complementarity with inertial sensors. For the sake of simplicity and robustness, the vision system only tracks the objects but not the teacher. The correction is based on so-called Positions Of Interest (POIs) and involves 3 steps: the identification of the POIs in the inertial and vision data, the pairing of the hand POIs to objects POIs that correspond to the same action in the task, and finally, the correction of the hand trajectory based on the pairs of POIs. The complete method for demonstration acquisition is experimentally evaluated in a full PbD process. This experiment reveals the advantages of the proposed method over kinesthesy in the context of this work.La programmation par démonstration est une approche intuitive permettant de transmettre une tâche à un robot à partir d'une ou plusieurs démonstrations faites par un enseignant humain. L'acquisition des démonstrations nécessite cependant la résolution d'un problème de correspondance quand les systèmes sensitifs et moteurs de l'enseignant et de l'apprenant diffèrent. De nombreux travaux utilisent des démonstrations faites par kinesthésie, i.e., l'enseignant manipule directement le robot pour lui faire faire la tâche. Ce dernier enregistre ses mouvements grâce à ses propres encodeurs. De cette façon, le problème de correspondance est trivial. Lors de telles démonstrations, la dextérité de l'enseignant peut être altérée et impacter tout le processus de programmation par démonstration. Les méthodes d'acquisition de démonstration moins invalidantes pour l'enseignant nécessitent souvent des procédures spécifiques pour résoudre le problème de correspondance. Ainsi l'acquisition des démonstrations se base sur un compromis entre complexité de ces procédures, le niveau de précision des éléments enregistrés et la commodité pour l'enseignant. Cette thèse propose ainsi une méthode de mesure du mouvement humain par capteurs inertiels pour la programmation par démonstration de tâches de ``pick-and-place''. Les capteurs inertiels sont en effet pratiques et faciles à utiliser, mais sont d'une précision limitée. Nous étudions leur potentiel pour la programmation par démonstration. Pour estimer la trajectoire de la main de l'enseignant, des capteurs inertiels sont placés sur son bras, son avant-bras et sa main afin d'estimer leurs orientations. Une méthode est proposée afin de compenser partiellement la dérive de l'estimation de l'orientation des capteurs autour de la direction de la gravité. Cette méthode, appelée ``heading reset'', est basée sur l'hypothèse que le capteur passe plusieurs fois par son azimut initial avec des phases stationnaires lors d'une démonstration. Cette méthode est implémentée dans un algorithme d'intégration et d'observation de vecteur. Des expériences illustrent les avantages du ``heading reset''. Cette thèse développe ensuite une méthode complète de mesure des mouvements de la main humaine par capteurs inertiels (IHMT). Elle comprend une première procédure d'initialisation pour estimer l'orientation des capteurs par rapport aux segments du bras humain ainsi que l'orientation initiale des capteurs par rapport au repère de référence de l'humain. Cette procédure, consistant en une rotation et une position statique du bras tendu, est robuste au positionnement des capteurs. Une seconde procédure est proposée pour estimer la position de l'humain par rapport au robot et pour calibrer les paramètres de la méthode. Finalement, l'erreur moyenne sur la trajectoire de la main humaine est mesurée expérimentalement entre 28.5 mm et 61.8 mm, ce qui n'est cependant pas suffisant pour la programmation par démonstration. Afin d'atteindre le niveau de précision nécessaire, une nouvelle méthode est développée afin de corriger la trajectoire de la main par IHMT à partir de données issues d'un système de vision, complémentaire des capteurs inertiels. Pour maintenir une certaine simplicité et robustesse, le système de vision ne suit que les objets et pas l'enseignant. La méthode de correction, basée sur des ``Positions Of Interest (POIs)'', est constituée de 3 étapes: l'identification des POIs dans les données issues des capteurs inertiels et du système de vision, puis l'association de POIs liées à la main et de POIs liées aux objets correspondant à la même action, et enfin, la correction de la trajectoire de la main à partir des paires de POIs. Finalement, la méthode IHMT corrigée est expérimentalement évaluée dans un processus complet de programmation par démonstration. Cette expérience montre l'avantage de la méthode proposée sur la kinesthésie dans le contexte de ce travail

    Machine learning applications in search algorithms for gravitational waves from compact binary mergers

    Get PDF
    Gravitational waves from compact binary mergers are now routinely observed by Earth-bound detectors. These observations enable exciting new science, as they have opened a new window to the Universe. However, extracting gravitational-wave signals from the noisy detector data is a challenging problem. The most sensitive search algorithms for compact binary mergers use matched filtering, an algorithm that compares the data with a set of expected template signals. As detectors are upgraded and more sophisticated signal models become available, the number of required templates will increase, which can make some sources computationally prohibitive to search for. The computational cost is of particular concern when low-latency alerts should be issued to maximize the time for electromagnetic follow-up observations. One potential solution to reduce computational requirements that has started to be explored in the last decade is machine learning. However, different proposed deep learning searches target varying parameter spaces and use metrics that are not always comparable to existing literature. Consequently, a clear picture of the capabilities of machine learning searches has been sorely missing. In this thesis, we closely examine the sensitivity of various deep learning gravitational-wave search algorithms and introduce new methods to detect signals from binary black hole and binary neutron star mergers at previously untested statistical confidence levels. By using the sensitive distance as our core metric, we allow for a direct comparison of our algorithms to state-of-the-art search pipelines. As part of this thesis, we organized a global mock data challenge to create a benchmark for machine learning search algorithms targeting compact binaries. This way, the tools developed in this thesis are made available to the greater community by publishing them as open source software. Our studies show that, depending on the parameter space, deep learning gravitational-wave search algorithms are already competitive with current production search pipelines. We also find that strategies developed for traditional searches can be effectively adapted to their machine learning counterparts. In regions where matched filtering becomes computationally expensive, available deep learning algorithms are also limited in their capability. We find reduced sensitivity to long duration signals compared to the excellent results for short-duration binary black hole signals

    Color Prompting for Data-Free Continual Unsupervised Domain Adaptive Person Re-Identification

    Full text link
    Unsupervised domain adaptive person re-identification (Re-ID) methods alleviate the burden of data annotation through generating pseudo supervision messages. However, real-world Re-ID systems, with continuously accumulating data streams, simultaneously demand more robust adaptation and anti-forgetting capabilities. Methods based on image rehearsal addresses the forgetting issue with limited extra storage but carry the risk of privacy leakage. In this work, we propose a Color Prompting (CoP) method for data-free continual unsupervised domain adaptive person Re-ID. Specifically, we employ a light-weighted prompter network to fit the color distribution of the current task together with Re-ID training. Then for the incoming new tasks, the learned color distribution serves as color style transfer guidance to transfer the images into past styles. CoP achieves accurate color style recovery for past tasks with adequate data diversity, leading to superior anti-forgetting effects compared with image rehearsal methods. Moreover, CoP demonstrates strong generalization performance for fast adaptation into new domains, given only a small amount of unlabeled images. Extensive experiments demonstrate that after the continual training pipeline the proposed CoP achieves 6.7% and 8.1% average rank-1 improvements over the replay method on seen and unseen domains, respectively. The source code for this work is publicly available in https://github.com/vimar-gu/ColorPromptReID

    An Effective Surface Defect Classification Method Based on RepVGG with CBAM Attention Mechanism (RepVGG-CBAM) for Aluminum Profiles

    Get PDF
    The automatic classification of aluminum profile surface defects is of great significance in improving the surface quality of aluminum profiles in practical production. This classification is influenced by the small and unbalanced number of samples and lack of uniformity in the size and spatial distribution of aluminum profile surface defects. It is difficult to achieve high classification accuracy by directly using the current advanced classification algorithms. In this paper, digital image processing methods such as rotation, flipping, contrast, and luminance transformation were used to augment the number of samples and imitate the complex imaging environment in actual practice. A RepVGG with CBAM attention mechanism (RepVGG-CBAM) model was proposed and applied to classify ten types of aluminum profile surface defects. The classification accuracy reached 99.41%, in particular, the proposed method can perfectly classify six types of defects: concave line (cl), exposed bottom (eb), exposed corner bottom (ecb), mixed color (mc), non-conductivity (nc) and orange peel (op), with 100% precision, recall, and F1. Compared with the existing advanced classification algorithms VGG16, VGG19, ResNet34, ResNet50, ShuffleNet_v2, and basic RepVGG, our model is the best in terms of accuracy, macro precision, macro recall and macro F1, and the accuracy was improved by 4.85% over basic RepVGG. Finally, an ablation experiment proved that the classification ability was strongest when the CBAM attention mechanism was added following Stage 1 to Stage 4 of RepVGG. Overall, the method we proposed in this paper has a significant reference value for classifying aluminum profile surface defects

    Vision-based safe autonomous UAV landing with panoramic sensors

    Get PDF
    The remarkable growth of unmanned aerial vehicles (UAVs) has also raised concerns about safety measures during their missions. To advance towards safer autonomous aerial robots, this thesis strives to develop a safe autonomous UAV landing solution, a vital part of every UAV operation. The project proposes a vision-based framework for monitoring the landing area by leveraging the omnidirectional view of a single panoramic camera pointing upwards to detect and localize any person within the landing zone. Then, it sends this information to approaching UAVs to either hover and wait or adaptively search for a more optimal position to land themselves. We utilize and fine-tune the YOLOv7 object detection model, an XGBooxt model for localizing nearby people, and the open-source ROS and PX4 frameworks for communications and drone control. We present both simulation and real-world indoor experimental results to demonstrate the capability of our methods
    • …
    corecore