226 research outputs found

    On the Dynamic Time Warping of Cyclic Sequences for Shape Retrieval

    Get PDF
    In the last years, in shape retrieval, methods based on Dynamic Time Warping and sequences where each point of the contour is represented by elements of several dimensions have had a significant presence. In this approach each point of the closed contour contains information with respect to the other ones, this global information is very discriminant. The current state-of-the-art shape retrieval is based on the analysis of these distances to learn better ones. These methods are robust to noise and invariant to transformations, but, they obtain the invariance to the starting point with a brute force cyclic alignment which has a high computational time. In this work, we present the Cyclic Dynamic Time Warping. It can obtain the cyclic alignment in O(n2 log n) time, where n is the size of both sequences. Experimental results show that our proposal is a better alternative than the brute force cyclic alignment and other heuristics for obtaining this invariance

    aZIBO Shape Descriptor for Monitoring Tool Wear in Milling

    Get PDF
    El objetivo de este trabajo es estimar eficientemente el desgaste del mecanizado de metales y mejorar las operaciones de sustitución de la herramienta. El procesamiento de imágenes y la clasificación se utilizan para automatizar la toma de decisiones sobre el tiempo adecuado para el reemplazo dela herramienta. Específicamente, el descriptor de forma aZIBO (momentos absolutos de Zernike con orientación de contorno invariable) se ha utilizado para caracterizar el desgaste de la plaquita y garantizar su uso óptimo. Se ha creado un conjunto de datos compuesto por 577 regiones con diferentes niveles de desgaste. Se han llevado a cabo dos procesos de clasificación diferentes: el primero con tres clases diferentes (desgaste bajo, medio y alto -L, M y H, respectivamente) y el segundo con sólo dos clases: Low (L) y High (H). La clasificación se llevó a cabo utilizando por un lado kNN con cinco distancias diferentes y cinco valores de k y, por otra parte, una máquina de vectores de soporte (SVM). El rendimiento de aZIBO se ha comparado con descriptores de forma clásicos como los momentos de Hu y Flusser. Los supera, obteniendo tasas de éxito de hasta el 91,33% para la clasificación L-H y 90,12% para la clasificación L-M-H

    Shape-based invariant features extraction for object recognition

    No full text
    International audienceThe emergence of new technologies enables generating large quantity of digital information including images; this leads to an increasing number of generated digital images. Therefore it appears a necessity for automatic systems for image retrieval. These systems consist of techniques used for query specification and re-trieval of images from an image collection. The most frequent and the most com-mon means for image retrieval is the indexing using textual keywords. But for some special application domains and face to the huge quantity of images, key-words are no more sufficient or unpractical. Moreover, images are rich in content; so in order to overcome these mentioned difficulties, some approaches are pro-posed based on visual features derived directly from the content of the image: these are the content-based image retrieval (CBIR) approaches. They allow users to search the desired image by specifying image queries: a query can be an exam-ple, a sketch or visual features (e.g., colour, texture and shape). Once the features have been defined and extracted, the retrieval becomes a task of measuring simi-larity between image features. An important property of these features is to be in-variant under various deformations that the observed image could undergo. In this chapter, we will present a number of existing methods for CBIR applica-tions. We will also describe some measures that are usually used for similarity measurement. At the end, and as an application example, we present a specific ap-proach, that we are developing, to illustrate the topic by providing experimental results

    A Survey of Iris Recognition System

    Get PDF
    The uniqueness of iris texture makes it one of the reliable physiological biometric traits compare to the other biometric traits. In this paper, we investigate a different level of fusion approach in iris image. Although, a number of iris recognition methods has been proposed in recent years, however most of them focus on the feature extraction and classification method. Less number of method focuses on the information fusion of iris images. Fusion is believed to produce a better discrimination power in the feature space, thus we conduct an analysis to investigate which fusion level is able to produce the best result for iris recognition system. Experimental analysis using CASIA dataset shows feature level fusion produce 99% recognition accuracy. The verification analysis shows the best result is GAR = 95% at the FRR = 0.1

    Local, Semi-Local and Global Models for Texture, Object and Scene Recognition

    Get PDF
    This dissertation addresses the problems of recognizing textures, objects, and scenes in photographs. We present approaches to these recognition tasks that combine salient local image features with spatial relations and effective discriminative learning techniques. First, we introduce a bag of features image model for recognizing textured surfaces under a wide range of transformations, including viewpoint changes and non-rigid deformations. We present results of a large-scale comparative evaluation indicating that bags of features can be effective not only for texture, but also for object categization, even in the presence of substantial clutter and intra-class variation. We also show how to augment the purely local image representation with statistical co-occurrence relations between pairs of nearby features, and develop a learning and classification framework for the task of classifying individual features in a multi-texture image. Next, we present a more structured alternative to bags of features for object recognition, namely, an image representation based on semi-local parts, or groups of features characterized by stable appearance and geometric layout. Semi-local parts are automatically learned from small sets of unsegmented, cluttered images. Finally, we present a global method for recognizing scene categories that works by partitioning the image into increasingly fine sub-regions and computing histograms of local features found inside each sub-region. The resulting spatial pyramid representation demonstrates significantly improved performance on challenging scene categorization tasks
    corecore