6,787 research outputs found

    Landmark-Based Registration of Curves via the Continuous Wavelet Transform

    Get PDF
    This paper is concerned with the problem of the alignment of multiple sets of curves. We analyze two real examples arising from the biomedical area for which we need to test whether there are any statistically significant differences between two subsets of subjects. To synchronize a set of curves, we propose a new nonparametric landmark-based registration method based on the alignment of the structural intensity of the zero-crossings of a wavelet transform. The structural intensity is a multiscale technique recently proposed by Bigot (2003, 2005) which highlights the main features of a signal observed with noise. We conduct a simulation study to compare our landmark-based registration approach with some existing methods for curve alignment. For the two real examples, we compare the registered curves with FANOVA techniques, and a detailed analysis of the warping functions is provided

    Multiscale 3D Shape Analysis using Spherical Wavelets

    Get PDF
    ©2005 Springer. The original publication is available at www.springerlink.com: http://dx.doi.org/10.1007/11566489_57DOI: 10.1007/11566489_57Shape priors attempt to represent biological variations within a population. When variations are global, Principal Component Analysis (PCA) can be used to learn major modes of variation, even from a limited training set. However, when significant local variations exist, PCA typically cannot represent such variations from a small training set. To address this issue, we present a novel algorithm that learns shape variations from data at multiple scales and locations using spherical wavelets and spectral graph partitioning. Our results show that when the training set is small, our algorithm significantly improves the approximation of shapes in a testing set over PCA, which tends to oversmooth data

    Unified Heat Kernel Regression for Diffusion, Kernel Smoothing and Wavelets on Manifolds and Its Application to Mandible Growth Modeling in CT Images

    Full text link
    We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel regression is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. Unlike many previous partial differential equation based approaches involving diffusion, our approach represents the solution of diffusion analytically, reducing numerical inaccuracy and slow convergence. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, we have applied the method in characterizing the localized growth pattern of mandible surfaces obtained in CT images from subjects between ages 0 and 20 years by regressing the length of displacement vectors with respect to the template surface.Comment: Accepted in Medical Image Analysi

    Multilinear Wavelets: A Statistical Shape Space for Human Faces

    Full text link
    We present a statistical model for 33D human faces in varying expression, which decomposes the surface of the face using a wavelet transform, and learns many localized, decorrelated multilinear models on the resulting coefficients. Using this model we are able to reconstruct faces from noisy and occluded 33D face scans, and facial motion sequences. Accurate reconstruction of face shape is important for applications such as tele-presence and gaming. The localized and multi-scale nature of our model allows for recovery of fine-scale detail while retaining robustness to severe noise and occlusion, and is computationally efficient and scalable. We validate these properties experimentally on challenging data in the form of static scans and motion sequences. We show that in comparison to a global multilinear model, our model better preserves fine detail and is computationally faster, while in comparison to a localized PCA model, our model better handles variation in expression, is faster, and allows us to fix identity parameters for a given subject.Comment: 10 pages, 7 figures; accepted to ECCV 201

    A deconvolution approach to estimation of a common shape in a shifted curves model

    Get PDF
    This paper considers the problem of adaptive estimation of a mean pattern in a randomly shifted curve model. We show that this problem can be transformed into a linear inverse problem, where the density of the random shifts plays the role of a convolution operator. An adaptive estimator of the mean pattern, based on wavelet thresholding is proposed. We study its consistency for the quadratic risk as the number of observed curves tends to infinity, and this estimator is shown to achieve a near-minimax rate of convergence over a large class of Besov balls. This rate depends both on the smoothness of the common shape of the curves and on the decay of the Fourier coefficients of the density of the random shifts. Hence, this paper makes a connection between mean pattern estimation and the statistical analysis of linear inverse problems, which is a new point of view on curve registration and image warping problems. We also provide a new method to estimate the unknown random shifts between curves. Some numerical experiments are given to illustrate the performances of our approach and to compare them with another algorithm existing in the literature

    Velocity estimation via registration-guided least-squares inversion

    Get PDF
    This paper introduces an iterative scheme for acoustic model inversion where the notion of proximity of two traces is not the usual least-squares distance, but instead involves registration as in image processing. Observed data are matched to predicted waveforms via piecewise-polynomial warpings, obtained by solving a nonconvex optimization problem in a multiscale fashion from low to high frequencies. This multiscale process requires defining low-frequency augmented signals in order to seed the frequency sweep at zero frequency. Custom adjoint sources are then defined from the warped waveforms. The proposed velocity updates are obtained as the migration of these adjoint sources, and cannot be interpreted as the negative gradient of any given objective function. The new method, referred to as RGLS, is successfully applied to a few scenarios of model velocity estimation in the transmission setting. We show that the new method can converge to the correct model in situations where conventional least-squares inversion suffers from cycle-skipping and converges to a spurious model.Comment: 20 pages, 13 figures, 1 tabl
    corecore