17,429 research outputs found

    Homological Region Adjacency Tree for a 3D Binary Digital Image via HSF Model

    Get PDF
    Given a 3D binary digital image I, we define and compute an edge-weighted tree, called Homological Region Tree (or Hom-Tree, for short). It coincides, as unweighted graph, with the classical Region Adjacency Tree of black 6-connected components (CCs) and white 26- connected components of I. In addition, we define the weight of an edge (R, S) as the number of tunnels that the CCs R and S “share”. The Hom-Tree structure is still an isotopic invariant of I. Thus, it provides information about how the different homology groups interact between them, while preserving the duality of black and white CCs. An experimentation with a set of synthetic images showing different shapes and different complexity of connected component nesting is performed for numerically validating the method.Ministerio de Economía y Competitividad MTM2016-81030-

    Computing the Component-Labeling and the Adjacency Tree of a Binary Digital Image in Near Logarithmic-Time

    Get PDF
    Connected component labeling (CCL) of binary images is one of the fundamental operations in real time applications. The adjacency tree (AdjT) of the connected components offers a region-based representation where each node represents a region which is surrounded by another region of the opposite color. In this paper, a fully parallel algorithm for computing the CCL and AdjT of a binary digital image is described and implemented, without the need of using any geometric information. The time complexity order for an image of m Ă— n pixels under the assumption that a processing element exists for each pixel is near O(log(m+ n)). Results for a multicore processor show a very good scalability until the so-called memory bandwidth bottleneck is reached. The inherent parallelism of our approach points to the direction that even better results will be obtained in other less classical computing architectures.Ministerio de EconomĂ­a y Competitividad MTM2016-81030-PMinisterio de EconomĂ­a y Competitividad TEC2012-37868-C04-0

    2D parallel thinning and shrinking based on sufficient conditions for topology preservation

    Get PDF
    Thinning and shrinking algorithms, respectively, are capable of extracting medial lines and topological kernels from digital binary objects in a topology preserving way. These topological algorithms are composed of reduction operations: object points that satisfy some topological and geometrical constraints are removed until stability is reached. In this work we present some new sufficient conditions for topology preserving parallel reductions and fiftyfour new 2D parallel thinning and shrinking algorithms that are based on our conditions. The proposed thinning algorithms use five characterizations of endpoints

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Head-mounted spatial instruments II: Synthetic reality or impossible dream

    Get PDF
    A spatial instrument is defined as a spatial display which has been either geometrically or symbolically enhanced to enable a user to accomplish a particular task. Research conducted over the past several years on 3-D spatial instruments has shown that perspective displays, even when viewed from the correct viewpoint, are subject to systematic viewer biases. These biases interfere with correct spatial judgements of the presented pictorial information. The design of spatial instruments may not only require the introduction of compensatory distortions to remove the naturally occurring biases but also may significantly benefit from the introduction of artificial distortions which enhance performance. However, these image manipulations can cause a loss of visual-vestibular coordination and induce motion sickness. Consequently, the design of head-mounted spatial instruments will require an understanding of the tolerable limits of visual-vestibular discord
    • …
    corecore