4,367 research outputs found

    Weakly supervised 3D Reconstruction with Adversarial Constraint

    Full text link
    Supervised 3D reconstruction has witnessed a significant progress through the use of deep neural networks. However, this increase in performance requires large scale annotations of 2D/3D data. In this paper, we explore inexpensive 2D supervision as an alternative for expensive 3D CAD annotation. Specifically, we use foreground masks as weak supervision through a raytrace pooling layer that enables perspective projection and backpropagation. Additionally, since the 3D reconstruction from masks is an ill posed problem, we propose to constrain the 3D reconstruction to the manifold of unlabeled realistic 3D shapes that match mask observations. We demonstrate that learning a log-barrier solution to this constrained optimization problem resembles the GAN objective, enabling the use of existing tools for training GANs. We evaluate and analyze the manifold constrained reconstruction on various datasets for single and multi-view reconstruction of both synthetic and real images

    Neural 3D Mesh Renderer

    Full text link
    For modeling the 3D world behind 2D images, which 3D representation is most appropriate? A polygon mesh is a promising candidate for its compactness and geometric properties. However, it is not straightforward to model a polygon mesh from 2D images using neural networks because the conversion from a mesh to an image, or rendering, involves a discrete operation called rasterization, which prevents back-propagation. Therefore, in this work, we propose an approximate gradient for rasterization that enables the integration of rendering into neural networks. Using this renderer, we perform single-image 3D mesh reconstruction with silhouette image supervision and our system outperforms the existing voxel-based approach. Additionally, we perform gradient-based 3D mesh editing operations, such as 2D-to-3D style transfer and 3D DeepDream, with 2D supervision for the first time. These applications demonstrate the potential of the integration of a mesh renderer into neural networks and the effectiveness of our proposed renderer

    BodyNet: Volumetric Inference of 3D Human Body Shapes

    Get PDF
    Human shape estimation is an important task for video editing, animation and fashion industry. Predicting 3D human body shape from natural images, however, is highly challenging due to factors such as variation in human bodies, clothing and viewpoint. Prior methods addressing this problem typically attempt to fit parametric body models with certain priors on pose and shape. In this work we argue for an alternative representation and propose BodyNet, a neural network for direct inference of volumetric body shape from a single image. BodyNet is an end-to-end trainable network that benefits from (i) a volumetric 3D loss, (ii) a multi-view re-projection loss, and (iii) intermediate supervision of 2D pose, 2D body part segmentation, and 3D pose. Each of them results in performance improvement as demonstrated by our experiments. To evaluate the method, we fit the SMPL model to our network output and show state-of-the-art results on the SURREAL and Unite the People datasets, outperforming recent approaches. Besides achieving state-of-the-art performance, our method also enables volumetric body-part segmentation.Comment: Appears in: European Conference on Computer Vision 2018 (ECCV 2018). 27 page

    MonoPerfCap: Human Performance Capture from Monocular Video

    Full text link
    We present the first marker-less approach for temporally coherent 3D performance capture of a human with general clothing from monocular video. Our approach reconstructs articulated human skeleton motion as well as medium-scale non-rigid surface deformations in general scenes. Human performance capture is a challenging problem due to the large range of articulation, potentially fast motion, and considerable non-rigid deformations, even from multi-view data. Reconstruction from monocular video alone is drastically more challenging, since strong occlusions and the inherent depth ambiguity lead to a highly ill-posed reconstruction problem. We tackle these challenges by a novel approach that employs sparse 2D and 3D human pose detections from a convolutional neural network using a batch-based pose estimation strategy. Joint recovery of per-batch motion allows to resolve the ambiguities of the monocular reconstruction problem based on a low dimensional trajectory subspace. In addition, we propose refinement of the surface geometry based on fully automatically extracted silhouettes to enable medium-scale non-rigid alignment. We demonstrate state-of-the-art performance capture results that enable exciting applications such as video editing and free viewpoint video, previously infeasible from monocular video. Our qualitative and quantitative evaluation demonstrates that our approach significantly outperforms previous monocular methods in terms of accuracy, robustness and scene complexity that can be handled.Comment: Accepted to ACM TOG 2018, to be presented on SIGGRAPH 201

    Learning to Reconstruct People in Clothing from a Single RGB Camera

    No full text
    We present a learning-based model to infer the personalized 3D shape of people from a few frames (1-8) of a monocular video in which the person is moving, in less than 10 seconds with a reconstruction accuracy of 5mm. Our model learns to predict the parameters of a statistical body model and instance displacements that add clothing and hair to the shape. The model achieves fast and accurate predictions based on two key design choices. First, by predicting shape in a canonical T-pose space, the network learns to encode the images of the person into pose-invariant latent codes, where the information is fused. Second, based on the observation that feed-forward predictions are fast but do not always align with the input images, we predict using both, bottom-up and top-down streams (one per view) allowing information to flow in both directions. Learning relies only on synthetic 3D data. Once learned, the model can take a variable number of frames as input, and is able to reconstruct shapes even from a single image with an accuracy of 6mm. Results on 3 different datasets demonstrate the efficacy and accuracy of our approach
    • …
    corecore