28,409 research outputs found

    Effects of Highlights on Gloss Perception

    Full text link
    The perception of a glossy surface in a static monochromatic image can occur when a bright highlight is embedded in a compatible context of shading and a bounding contour. Some images naturally give rise to the impression that a surface has a uniform reflectance, characteristic of a shiny object, even though the highlight may only cover a small portion of the surface. Nonetheless, an observer may adopt an attitude of scrutiny in viewing a glossy surface, whereby the impression of gloss is partial and nonuniform at image regions outside of a higlight. Using a rating scale and small probe points to indicate image locations, differential perception of gloss within a single object is investigate in the present study. Observers' gloss ratings are not uniform across the surface, but decrease as a function of distance from highlight. When, by design, the distance from a highlight is uncoupled from the luminance value at corresponding probe points, the decrease in rated gloss correlates more with the distance than with the luminance change. Experiments also indicate that gloss ratings change as a function of estimated surface distance, rather than as a function of image distance. Surface continuity affects gloss ratings, suggesting that apprehension of 3D surface structure is crucial for gloss perception.Air Force Office of Scientific Research (F49620-98-1-0108), Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409), National Science Foundation (IIS-97-20333); Office of Naval Research (N00014-95-1-0657, N00014-01-1-0624); Whitaker Foundation (RG-99-0186

    Approaching Visual Search in Photo-Realistic Scenes

    Full text link
    Visual search is extended from the domain of polygonal figures presented on a uniform background to scenes in which search is for a photo-realistic object in a dense, naturalistic background. Scene generation for these displays relies on a powerful solid modeling program to define the three dimensional forms, surface properties, relative positions, and illumination of the objects and a rendering program to produce an image. Search in the presented experiments is for a rock with specific properties among other, similar rocks, although the method described can be generalized to other situations. Using this technique we explore the effects of illumination and shadows in aiding search for a rock in front of and closer to the viewer than other rocks in the scene. For these scenes, shadows of two different contrast levels can significantly deet·ease reaction times for displays in which target rocks are similar to distractor rocks. However, when the target rock is itself easily distinguishable from dis tractors on the basis of form, the presence or absence of shadows has no discernible effect. To relate our findings to those for earlier polygonal displays, we simplified the non-shadow displays so that only boundary information remained. For these simpler displays, search slopes (the reaction time as a function of the number of distractors) were significantly faster, indicating that the more complex photo-realistic objects require more time to process for visual search. In contrast with several previous experiments involving polygonal figures, we found no evidence for an effect of illumination direction on search times

    Analysis and approximation of some Shape-from-Shading models for non-Lambertian surfaces

    Full text link
    The reconstruction of a 3D object or a scene is a classical inverse problem in Computer Vision. In the case of a single image this is called the Shape-from-Shading (SfS) problem and it is known to be ill-posed even in a simplified version like the vertical light source case. A huge number of works deals with the orthographic SfS problem based on the Lambertian reflectance model, the most common and simplest model which leads to an eikonal type equation when the light source is on the vertical axis. In this paper we want to study non-Lambertian models since they are more realistic and suitable whenever one has to deal with different kind of surfaces, rough or specular. We will present a unified mathematical formulation of some popular orthographic non-Lambertian models, considering vertical and oblique light directions as well as different viewer positions. These models lead to more complex stationary nonlinear partial differential equations of Hamilton-Jacobi type which can be regarded as the generalization of the classical eikonal equation corresponding to the Lambertian case. However, all the equations corresponding to the models considered here (Oren-Nayar and Phong) have a similar structure so we can look for weak solutions to this class in the viscosity solution framework. Via this unified approach, we are able to develop a semi-Lagrangian approximation scheme for the Oren-Nayar and the Phong model and to prove a general convergence result. Numerical simulations on synthetic and real images will illustrate the effectiveness of this approach and the main features of the scheme, also comparing the results with previous results in the literature.Comment: Accepted version to Journal of Mathematical Imaging and Vision, 57 page
    • …
    corecore