43,005 research outputs found

    Convolutional Neural Network on Three Orthogonal Planes for Dynamic Texture Classification

    Get PDF
    Dynamic Textures (DTs) are sequences of images of moving scenes that exhibit certain stationarity properties in time such as smoke, vegetation and fire. The analysis of DT is important for recognition, segmentation, synthesis or retrieval for a range of applications including surveillance, medical imaging and remote sensing. Deep learning methods have shown impressive results and are now the new state of the art for a wide range of computer vision tasks including image and video recognition and segmentation. In particular, Convolutional Neural Networks (CNNs) have recently proven to be well suited for texture analysis with a design similar to a filter bank approach. In this paper, we develop a new approach to DT analysis based on a CNN method applied on three orthogonal planes x y , xt and y t . We train CNNs on spatial frames and temporal slices extracted from the DT sequences and combine their outputs to obtain a competitive DT classifier. Our results on a wide range of commonly used DT classification benchmark datasets prove the robustness of our approach. Significant improvement of the state of the art is shown on the larger datasets.Comment: 19 pages, 10 figure

    Phase boundary anisotropy and its effects on the maze-to-lamellar transition in a directionally solidified Al-Al2Cu eutectic

    Full text link
    Solid-solid phase boundary anisotropy is a key factor controlling the selection and evolution of non-faceted eutectic patterns during directional solidification. This is most remarkably observed during the so-called maze-to-lamellar transition. By using serial sectioning, we followed the spatio-temporal evolution of a maze pattern over long times in a large Al-Al2Cu eutectic grain with known crystal orientation of the Al and Al2Cu phases, hence known crystal orientation relationship (OR). The corresponding phase boundary energy anisotropy (Îł\gamma-plot) was also known, as being previously estimated from molecular-dynamics computations. The experimental observations reveal the time-scale of the maze-to-lamellar transition and shed light on the processes involved in the gradual alignment of the phase boundaries to one distinct energy minimum which nearly corresponds to one distinct plane from the family {120}Al//{110}Al2Cu\{120\}^{\rm{Al}} //\{110\}^{\rm{Al2Cu}}. This particular plane is selected due to a crystallographic bias induced by a small disorientation of the crystals relative to the perfect OR. The symmetry of the OR is thus slightly broken, which promotes lamellar alignment. Finally, the maze-to-lamellar transition leaves behind a network of fault lines inherited from the phase boundary alignment process. In the maze pattern, the fault lines align along the corners of the Wulff shape, thus allowing us to propose a link between the pattern defects and missing orientations in the Wulff shapeComment: 26 pages, 6 figure

    Texture Evolution of AZ31 Magnesium Alloy Sheet at High Strain Rates

    Get PDF
    In the current contribution the mechanical behaviour at high strain rates of AZ31 magnesium alloy sheet is studied. Uniaxial deformation properties were studied by means of tensile split Hopkinson pressure bar (SHPB) at different temperatures. The influence of the strain rate and temperature on the deformation mechanisms was investigated by means of electron backscatter diffraction (EBSD) and neutron diffraction. It is shown that twinning plays an important role on high strain rate deformation of this alloy, even at elevated temperatures. Significant evidence of prismatic slip as a deformation mechanism is observed, also at warm temperatures, leading to the alignment of directions with the tensile axis and to a spread of the intensities of the basal pole figure towards the in-plane direction perpendicular to the tensile axis. The rate of decrease of the CRSS of non-basal systems is observed to be slower than at quasi-static rates. Secondary twinning and pyramidal slip were also outlined for some conditions. At warm temperatures, in contrast to quasi-static range, a generalized dynamic recrystallization is not observed. Moreover, the activation of rotational recrystallization mechanisms is reporte

    Plane-Based Optimization of Geometry and Texture for RGB-D Reconstruction of Indoor Scenes

    Full text link
    We present a novel approach to reconstruct RGB-D indoor scene with plane primitives. Our approach takes as input a RGB-D sequence and a dense coarse mesh reconstructed by some 3D reconstruction method on the sequence, and generate a lightweight, low-polygonal mesh with clear face textures and sharp features without losing geometry details from the original scene. To achieve this, we firstly partition the input mesh with plane primitives, simplify it into a lightweight mesh next, then optimize plane parameters, camera poses and texture colors to maximize the photometric consistency across frames, and finally optimize mesh geometry to maximize consistency between geometry and planes. Compared to existing planar reconstruction methods which only cover large planar regions in the scene, our method builds the entire scene by adaptive planes without losing geometry details and preserves sharp features in the final mesh. We demonstrate the effectiveness of our approach by applying it onto several RGB-D scans and comparing it to other state-of-the-art reconstruction methods.Comment: in International Conference on 3D Vision 2018; Models and Code: see https://github.com/chaowang15/plane-opt-rgbd. arXiv admin note: text overlap with arXiv:1905.0885

    GENERATION OF FORESTS ON TERRAIN WITH DYNAMIC LIGHTING AND SHADOWING

    Get PDF
    The purpose of this research project is to exhibit an efficient method of creating dynamic lighting and shadowing for the generation of forests on terrain. In this research project, I use textures which contain images of trees from a bird’s eye view in order to create a high scale forest. Furthermore, by manipulating the transparency and color of the textures according to the algorithmic calculations of light and shadow on terrain, I provide the functionality of dynamic lighting and shadowing. Finally, by analyzing the OpenGL pipeline, I design my code in order to allow efficient rendering of the forest
    • 

    corecore